The theory of quantum gravity promises a revolutionary new understanding of gravity and spacetime, valid from microscopic to cosmological distances. Research in this field involves an exciting blend of rigorous mathematics and bold speculations, foundational questions and technical issues.

Containing contributions from leading researchers in the field, this book presents the fundamental issues involved in the construction of a quantum theory of gravity and building up a quantum picture of space and time. It introduces the most current approaches to this problem, and reviews their main achievements. Each part ends in questions and answers, in which the contributors explore the merits and problems of the various approaches. This book provides a complete overview of this field from the frontiers of theoretical physics research for graduate students and researchers.

Physics, Potsdam, Germany, working on non-perturbative quantum gravity. He has previously worked at the Perimeter Institute for Theoretical Physics, Canada; the Institute of Theoretical Physics at Utrecht University, the Netherlands; and the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK. He is well known for his results on spin foam models, and is among the leading researchers in the group field theory approach to quantum gravity.

Cover image: @ iStock International Inc. / Irina Tischenko

UNIVERSITY PRESS www.cambridge.org

ISBN 978-0-521-86045-1

Cover designed by Hart McLeod

Contents

Lis	t of contributors	page x
Pre	eface	XV
IDE	bres-dimensional spin form Quantum Gravity	16
Pa	rt I Fundamental ideas and general formalisms	1
1	Unfinished revolution	3
	C. Rovelli	
2	The fundamental nature of space and time	13
	G. 't Hooft	
3	Does locality fail at intermediate length scales? R. D. Sorkin	26
4	Prolegomena to any future Quantum Gravity J. Stachel	44
5	Spacetime symmetries in histories canonical gravity	68
_	N. Savvidou	
6	Categorical geometry and the mathematical	9
	foundations of Quantum Gravity	84
_	L. Crane	00
7	Emergent relativity	99
0	O. Dreyer	
8	Asymptotic safety	111
	R. Percacci	Part
9	New directions in background independent Quantum Gravity	129
	F. Markopoulou	0
Qu	estions and answers	150
	Burgess	
Pa	rt II String/M-theory	167
10	Gauge/gravity duality	169
	G. Horowitz and J. Polchinski	6 .

11	String theory, holography and Quantum Gravity T. Banks	187
12	String field theory	210
	W. Taylor	-10
Que	estions and answers	229
Pa	rt III Loop quantum gravity and spin foam models	233
13	Loop quantum gravity	235
	T. Thiemann	
14	Covariant loop quantum gravity?	253
	E. Livine	
15	The spin foam representation of loop quantum gravity	272
YX	A. Perez	
16	Three-dimensional spin foam Quantum Gravity	290
17	L. Freidel	Part
17	The group field theory approach to Quantum Gravity	310
0	D. Oriti	222
Que	estions and answers	332
Pa	rt IV Discrete Quantum Gravity	339
18	Quantum Gravity: the art of building spacetime	341
	J. Ambjørn, J. Jurkiewicz and R. Loll	
19	Quantum Regge calculus	360
	R. Williams	
20	Consistent discretizations as a road to Quantum Gravity	378
	R. Gambini and J. Pullin	
21	The causal set approach to Quantum Gravity	393
	J. Henson	
Qu	estions and answers	414
Pa	rt V Effective models and Quantum Gravity phenomenology	425
22		427
	G. Amelino-Camelia	127
23	Quantum Gravity and precision tests	450
	C. Burgess	
24	Algebraic approach to Quantum Gravity II: noncommutative	
	spacetime	466
	S. Majid	

	Contents	ix
25	Doubly special relativity J. Kowalski-Glikman	493
26	From quantum reference frames to deformed special relativity <i>F. Girelli</i>	509
27	Lorentz invariance violation and its role in Quantum Gravity	
	phenomenology	528
	J. Collins, A. Perez and D. Sudarsky	
28	Generic predictions of quantum theories of gravity	548
	L. Smolin	
Que	estions and answers	571
Ind	ex	580