

Contents

1 Evolution by natural selection	2
Darwin's theory	3
Evolution <i>in vitro</i>	5
Lamarck, Weismann, and the central dogma	8
Further reading	12
Problems	13
Computer projects	13
2 Models of populations	14
Models of population growth	15
Selection in an asexual population	17
The accuracy of replication	20
Genetic drift in finite populations	24
Further reading	27
Problems	27
Computer projects	28
3 Evolution in diploid populations	30
Gene frequencies and the Hardy-Weinberg ratio	31
The concept of fitness	36
The spread of a favourable gene	40
Further reading	45
Problems	46
Computer projects	47
4 The variability of natural populations	48
The evidence for genetic variability	49
Mutation	53
The maintenance of variation	65
Further reading	77
Problems	77
Computer projects	78
5 Evolution at more than one locus	80
Linkage disequilibrium	81
Heterostyly in plants	84

Mimicry in butterflies	86
Linkage disequilibrium in natural populations	87
Normalizing selection and linkage disequilibrium	89
Further reading	91
Problems	91
Computer projects	91
6 Quantitative genetics	92
Nature and nurture	93
The additive genetic model	96
A more realistic model	108
Experiments in artificial selection	113
Quantitative variation and fitness	117
The maintenance of genetic variation for quantitative traits	119
Further reading	122
Problems	122
Computer projects	123
7 A model of phenotypic evolution	124
Pairwise interactions	126
Some extensions of the model	132
Will a sexual population evolve to an ESS?	135
Further reading	136
Problems	136
Computer projects	137
8 Finite and structured populations	138
Inbreeding	139
Genetic drift	144
The rate of neutral molecular evolution	147
Mitochondrial DNA	153
Migration and differentiation between populations	156
The establishment of a new favourable mutation	161
Further reading	162
Problems	162
Computer projects	163
9 Evolution in structured populations	164
Selection in trait groups	165
The evolution of co-operation: synergistic selection	167
The evolution of co-operation: relatedness	169

The group as the unit of evolution	175
The shifting balance theory	181
Further reading	183
Problems	183
Computer projects	184
10 The evolution of prokaryotes	186
The evolution of gene function	187
Phages, plasmids, and transposable elements	189
The evolution of phages and their hosts	191
The evolution of plasmids	192
The evolution of transposons	195
The population genetics of <i>E. coli</i>	196
The evolution of viruses	198
Further reading	201
Computer projects	201
11 The evolution of the eukaryotic genome	202
The nature of the genome	203
The haemoglobin gene family	205
Duplication and the increase of DNA content	211
The ribosomal genes	214
Unequal crossing over and gene conversion	215
Repetitive DNA	217
The evolution of chromosome form	224
Further reading	227
Computer projects	228
12 The evolution of genetic systems.	
I. Sex and recombination	230
The natural history of eukaryotic sex	231
The evolutionary significance of sex	237
The evolution of recombination	246
Further reading	254
13 The evolution of genetic systems.	
II. Some consequences of sex	256
The sex ratio	257
Selfing and outcrossing	261
Hermaphroditism	261

Sexual selection	264
Further reading	269
Problems	269
Computer projects	270
14 Macroevolution	272
Species and speciation	273
Patterns of evolution	280
Coevolution	292
Further reading	303
Problems	303
Computer projects	303
Answers to problems	305
References	313
Index	321