Contents

Preface	About the Author Preface Companion Website		
Compan	ion website	xix	
1. Inor	organic Chemistry and the Environment		
1.1	Introduction		
	1.1.1 Energetics of Processes	1	
1.2	Neutron-Proton Conversion	3	
1.3	Element Burning Reactions – Buildup of Larger Elements	4	
1.4	Nuclear Stability and Binding Energy	5	
	1.4.1 The "r" and "s" Processes	6	
1.5	Nuclear Stability (Radioactive Decay)	8	
1.6	Atmospheric Synthesis of Elements	8	
1.7	Abundance of the Elements	8	
	1.7.1 The Cosmos and the Earth's Lithosphere	8	
	1.7.2 Elemental Abundance (Atmosphere, Oceans, and Human Body)	10	
1.8	Scope of Inorganic Chemistry in Geochemistry and the Environment	17	
	1.8.1 Elemental Distribution Based on Photosynthesis and Chemosynthesis	17	
	1.8.2 Stratified Waters and Sediments – the Degradation of Organic Matter by		
	Alternate Electron Acceptors	19	
1.9	Summary	21	
	1.9.1 Environmental Inorganic Chemistry	22	
	References	22	
2. Oxio	dation-Reduction Reactions (Redox)	24	
2.1	Introduction	24	
	2.1.1 Energetics of Half Reactions	24	
	2.1.2 Standard Potential and the Stability of a Chemical Species of an Element	26	
2.2	Variation of Standard Potential with pH (the Nernst Equation)	29	
2.3	Thermodynamic Calculations and pH Dependence	29	
2.4	Stability Field of Aqueous Chemical Species		
2.5	Natural Environments	32	
2.6	Calculations to Predict Favorable Chemical Reactions	32	
	2.6.1 Coupling Half-Reactions	34	
	2.6.2 One-Electron Oxygen Transformations with Ee^{2+} and Mn^{2+} to Form O_{2-}	35	

	2.7	Highly Oxidizing Conditions	38		
		2.7.1 Ozonolysis Reactions	38		
		2.7.2 Atmospheric Redox Reactions	39		
		Appendix 2.1 Gibbs Free Energies of Formation	43		
		References	43		
3.	Aton	nic Structure	45		
	3.1	History	45		
	3.2	The Bohr Atom	46		
	3.3	The Schrodinger Wave Equation	47		
	3.4	Components of the Wave Function	50		
		3.4.1 Radial Part of the Wave Function, $R(r)$	50		
		3.4.2 Angular Part of the Wavefunction $Y_{lml}(\theta, \phi)$ and Atomic Orbitals	54		
	3.5	The Four Quantum Numbers	56		
	3.6	The Polyelectronic Atoms and the Filling of Orbitals for the Atoms of			
		the Elements	58		
	3.7	Aufbau Principle	61		
	3.8	Atomic Properties	62		
		3.8.1 Orbitals Energies and Shielding	62		
		3.8.2 Term Symbols: Coupling of Spin and Orbital Angular Momentum	63		
		3.8.3 Periodic Properties – Atomic Radius	67		
		3.8.4 Periodic Properties – Ionization Potential (IP)	67		
		3.8.5 Periodic Properties – Electron Affinity (EA)	71		
		3.8.6 Periodic Properties – Electronegativity (χ)	74		
		3.8.7 Periodic Properties – Hardness (η)	75		
		References	77		
4.	Sym	metry	79		
	4.1	Introduction			
	4.2	Symmetry Concepts	79		
		4.2.1 Symmetry Operation	79		
		4.2.2 Symmetry Element	79		
		4.2.3 Symmetry Elements and Operations	80		
	4.3	Point Groups	84		
		4.3.1 Special Groups and Platonic Solids/Polyhedra	85		
		4.3.2 Examples of the Use of the Scheme for Determining Point Groups	88		
	4.4	Optical Isomerism and Symmetry	92		
		4.4.1 Dichloro-Allene Derivatives (C ₃ H ₂ Cl ₂)	92		
		4.4.2 Tartaric Acid	93		
		4.4.3 Cylindrical Helix Molecules	93		
	4.5	Fundamentals of Group Theory	93		
		4.5.1 $C_{2\nu}$ Point Group	95		
		4.5.2 Explanation of the Character Table	96		
		4.5.3 Generation of the Irreducible Representations ($C_{2\nu}$ Case)	97		
		4.5.4 Notation for Irreducible Representations	97		

		4.5.5	Some Important Properties of the Characters and their	
			Irreducible Representations	98
		4.5.6	Nonindependence of x and y Transformations (Higher Order Rotations)	98
	4.6	Selecte	ed Applications of Group Theory	101
		4.6.1	Generation of a Reducible Representation to Describe a Molecule	101
		4.6.2	Determining the IR and Raman Activity of Vibrations in Molecules	104
		4.6.3	Determining the Vibrational Modes of Methane, CH ₄	105
		4.6.4	Determining the Irreducible Representations and Symmetry of the Central	
			Atom's Atomic Orbitals that Form Bonds	107
	4.7	Symmo	etry Adapted Linear Combination (SALC) of Orbitals	111
		4.7.1	Sigma Bonding with Hydrogen as Terminal Atom	111
		4.7.2	Sigma and Pi Bonding with Atoms Other than Hydrogen	
			as Terminal Atom	114
			dix 4.1 Some Additional useful Character Tables	120
		Refere	nces	122
5.	Cova	lent Bo	nding	123
	5.1	Introdu	action	123
		5.1.1	Lewis Structures and the Octet Rule	123
		5.1.2	Valence Shell Electron Pair Repulsion Theory (VSEPR)	126
	5.2	Valenc	e Bond Theory (VBT)	127
		5.2.1	H ₂ and Valence Bond Theory	129
		5.2.2	Ionic Contributions to Covalent Bonding	130
		5.2.3	Polyatomic Molecules and Valence Bond Theory	131
	5.3		ılar Orbital Theory (MOT)	132
		5.3.1	H_2	132
		5.3.2	Types of Orbital Overlap	137
		5.3.3	Writing Generalized Wave Functions	138
		5.3.4	Brief Comments on Computational Methods and Computer Modeling	139
		5.3.5	Homonuclear Diatomic Molecules (A ₂)	140
		5.3.6	Heteronuclear Diatomic Molecules and Ions (AB; HX) – Sigma Bonds Only	144
		5.3.7	Heteronuclear Diatomic Molecules and Ions (AB) – Sigma and Pi Bonds	147
	5.4		standing Reactions and Electron Transfer (Frontier Molecular Orbital Theory)	150
		5.4.1	Angular Overlap	151
		5.4.2	$H^+ + OH^-$	151
		5.4.3	$H_2 + D_2$	152
		5.4.4	$H_2 + F_2$	153
		5.4.5	$H_2 + C_2$	154
		5.4.6	$H_2 + N_2$ (also $CO + H_2$)	154
		5.4.7	Dihalogens as Oxidants	156
	<i>E E</i>	5.4.8 D-1	O ₂ as an Oxidant and its Reaction with H ₂ S and HS ⁻	157
	5.5		omic Molecules and Ions	161
		5.5.1	H ₃ ⁺ Molecular Cation	161
		5.5.2	BeH ₂ – Linear Molecule with Sigma Bonds Only	163
		5.5.3	H ₂ O – Angular Molecule with Sigma Bonds Only	165

x Contents

	5.6	Tetrah	edral and Pyramidal Species with Sigma Bonds only (CH ₄ , NH ₄ ⁺ , SO ₄ ²⁻)	168	
		5.6.1	CH_4	168	
		5.6.2	$NH_3(C_{3\nu})$	170	
		5.6.3	BH_3 and the Methyl Cation, CH_3^+ (D_{3h})	172	
	5.7	Triator	mic Compounds and Ions Involving π Bonds (A ₃ , AB ₂ , and ABC)	175	
		5.7.1	A ₃ Linear Species	175	
		5.7.2	AB ₂ Linear Species CO ₂ (COS and N ₂ O)	178	
		5.7.3	O ₃ , NO ₂ ⁻ , and SO ₂ (Angular Molecules)	180	
	5.8	Planar	Species (BF ₃ , NO ₃ ⁻ , CO ₃ ²⁻ , SO ₃)	182	
		Appen	dix 5.1 Bond Energies for Selected Bonds	184	
		Appen	dix 5.2 Energies of LUMOs and HOMOs	185	
		Refere	ences	186	
6.		ling in S	Solids	189	
	6.1 Introduction				
	6.2		ent Bonding in Metals: Band Theory	189	
		6.2.1	Atomic Orbital Combinations for Metals	189	
		6.2.2	Metal Conductors	191	
		6.2.3	Semiconductors and Insulators	191	
		6.2.4	Fermi Level	193	
		6.2.5	Density of States (DOS)	194	
		6.2.6	Doping of Semiconductors	195	
		6.2.7	Structures of Solids	196	
	6.3 Ionic Solids		200		
		6.3.1	Solids AX Stoichiometry	200	
		6.3.2	Solids with Stoichiometry of AX ₂ , AO ₂ , A ₂ O ₃ , ABO ₃ (Perovskite), AB ₂ O ₄		
		(22	(Spinel)	203	
		6.3.3	Crystal Radii	205	
		6.3.4	Radius Ratio Rule	205	
		6.3.5	Lattice Energy	207	
		6.3.6	Born-Haber Cycle	209	
		6.3.7	Thermal Stability of Ionic Solids	210	
		6.3.8	Defect Crystal Structures	212	
	6.4	_	articles and Molecular Clusters	214	
		Refere	nces	217	
7.		s and Ba		219	
	7.1	Introdu		219	
	7.2		nius and Bronsted–Lowry Definitions	219 222	
	7.3				
	7.4			223	
		7.4.1	Acidic Oxides	223	
		7.4.2	Basic Oxides	224	
	7.	7.4.3	Amphoteric Oxides	224	
	7.5		at System Definition	224	
		7.5.1	Leveling Effect	225	

			Contents xi
	7.6	Gas Phase Acid-Base Strength	225
		7.6.1 H_3^+ as a Reactant	227
	7.7	Lewis Definition	227
		7.7.1 MOT	228
		7.7.2 Molecular Iodine Adducts or Complexes as Examples	228
		7.7.3 Thermodynamics of Lewis Acid–Base Reactions	229
		7.7.4 Lewis Acid–Base Reactions of CO ₂ and I ₂ with Water	
		and Hydroxide Ion	230
		7.7.5 Lewis Acid–Base Competitive Reactions	232
	7.8	Classification of Acids and Bases	232
		7.8.1 Irving-Williams Stability Relationship for the First Transition Metal Series	es 232
		7.8.2 Class "a" and "b" Acids and Bases	233
		7.8.3 Hard Soft Acid Base (HSAB) Theory	233
	7.9	Acid-Base Properties of Solids	235
		References	235
8.	Intro	oduction to Transition Metals	237
	8.1	Introduction	237
	8.2	Coordination Geometries	237
	8.3	Nomenclature	240
		8.3.1 Complex Ion is Positive	241
		8.3.2 Complex Ion is Negative	242
		8.3.3 Complex Ion with Multiple Ligands	242
		8.3.4 Complex Ion with Ligand that can Bind with More Than	
		One Atom (Ambidentate)	243
		8.3.5 Complex Ion with Multidentate Ligands	243
		8.3.6 Two Complex Ions with a Bridging Ligand	243
	8.4	Bonding and Isomers for Octahedral Geometry	243
		8.4.1 Ionization Isomerism	244
		8.4.2 Hydrate (Solvate) Isomers	244
		8.4.3 Coordination Isomerism	245
		8.4.4 Linkage Isomerism	245
		8.4.5 Geometrical Isomerism – Four Coordination	246
	0.5	8.4.6 Optical Isomerism in Octahedral Geometry	248
	8.5	Bonding Theories for Transition Metal Complexes	250
		8.5.1 Valence Bond Theory	251
	0.6	8.5.2 Crystal Field Theory	252
	8.6	Molecular Orbital Theory	268
		8.6.1 Case 1 – Octahedral Geometry (Sigma Bonding Only)	268
		8.6.2 Case 2 – Octahedral Geometry (Sigma Bonding Plus Ligand π Donor)	271
	0.7	8.6.3 Case 3 – Octahedral Geometry (Sigma Bonding Plus Ligand π Acceptor)	272
	8.7	Angular Overlap Model	274
		8.7.1 AOM and π Ligand Donor Bonding	277
		8.7.2 AOM and π Ligand Acceptor Bonding	278
		8.7.3 MOT, Electrochemistry, and the Occupancy of Electrons in d Orbitals in <i>C</i> 8.7.4 AOM and Other Geometries	O_h 278
		O. 1.4 ACIVE AND UNICE CEORDERIES	//9

	8.8	More of	on Spectroscopy of Metal–Ligand Complexes	281	
		8.8.1	Charge Transfer Electronic Transitions	282	
		8.8.2	Electronic Spectra, Spectroscopic Terms, and the Energies of the		
			Terms for $d \rightarrow d$ Transitions	283	
		8.8.3	Energy and Spatial Description of the Electron Transitions Between t_{2g} and e_g *		
			Orbitals	296	
		8.8.4	More Details on Correlation Diagrams	297	
		8.8.5	Luminescence	299	
		8.8.6	Magnetism and Spin Crossover in Octahedral Complexes		
			and Natural Minerals	301	
		8.8.7	Note about f Orbitals in Cubic Symmetry (O_h)	303	
		Refere	ences	303	
9	Reac	tivity of	f Transition Metal Complexes: Thermodynamics, Kinetics and Catalysis	305	
٠.	9.1	-	odynamics Introduction	305	
	7.1	9.1.1	Successive Stability Constants on Water Substitution	305	
		9.1.2	The Chelate Effect	307	
	9.2		cs of Ligand Substitution Reactions	308	
	1.2	9.2.1	Kinetics of Water Exchange for Aqua Complexes	310	
		9.2.2	Intimate Mechanisms for Ligand Substitution Reactions	310	
		9.2.3	Kinetic Model and Activation Parameters	311	
		9.2.4	Dissociative Versus Associative Preference for Octahedral Ligand Substitution	311	
		7.2.4	Reactions	314	
		9.2.5	Stoichiometric Mechanisms	315	
		9.2.6	Tests for Reaction Mechanisms	320	
	9.3		tution in Octahedral Complexes	321	
	7.5	9.3.1	Examples of Dissociative Activated Mechanisms	321	
		9.3.2	Associative Activated Mechanisms	322	
	9.4		te Mechanisms Affected by Steric Factors (Dissociative Preference)	324	
	7.1	9.4.1	Intimate Mechanisms Affected by Ligands in Cis versus Trans Positions	321	
		<i>7</i> . 1.1	(Dissociative Preference)	324	
		9.4.2	Base Hydrolysis	325	
	9.5		te Versus Stoichiometric Mechanisms		
	9.6		tution in Square Planar Complexes (Associative Activation Predominates)	327 328	
	,.0	9.6.1	Effect of Leaving Group	330	
		9.6.2	Effect of Charge	330	
		9.6.3	Nature of the Intermediate – Electronic Factors	330	
		9.6.4	Nature of the Intermediate – Steric Factors	331	
	9.7		Electron Transfer Reactions	332	
	7.1	9.7.1	Outer Sphere Electron Transfer	333	
		9.7.2	Cross Reactions	337	
		9.7.3	Inner Sphere Electron Transfer	339	
	9.8		chemistry	341	
	7.0	9.8.1	Redox	341	
		9.8.2	Photosubstitution Reactions $d \rightarrow d$	341	
		9.8.3	LMCT and Photoreduction	342	
		9.8.4	MLCT Simultaneous Substitution and Photo-Oxidation Redox	342	
		J.U.T	The I diminimous substitution and I note Oxidation Redox	572	

		Contents	XIII
	9.9	Effective Atomic Number (EAN) Rule or the Rule of 18	342
	9.10	Thermodynamics and Kinetics of Organometallic Compounds	344
	9.11	Electron Transfer to Molecules during Transition Metal Catalysis	345
	9.12	Oxidation Addition (OXAD) and Reductive Elimination (Redel) Reactions	346
	9.12	Metal Catalysis	347
	9.13		348
		9.13.1 OXO or Hydroformylation Process 9.13.2 Heck Reaction	350
		9.13.3 Methyl Transferases	350
		9.13.4 Examples of Abiotic Organic Synthesis (Laboratory and Nature)	351
		9.13.5 The Haber Process Revisited	353
		References	353
10.	Trans	sition Metals in Natural Systems	356
	10.1	Introduction	356
	10.2	Factors Governing Metal Speciation in the Environment and in Organisms	356
	10.3	Transition Metals Essential for Life	358
	10.4	Important Environmental Iron and Manganese Reactions	359
		10.4.1 Oxidation of Fe ²⁺ and Mn ²⁺ by O_2 – Environmentally Important Metal	
		Electron Transfer Reactions	360
		10.4.2 Redox Properties of Iron–Ligand Complexes	363
		10.4.3 Metal Ions Exhibiting Outer Sphere Electron Transfer	364
	10.5	Oxygen (O_2) Storage and Transport	364
		10.5.1 Hemoglobin	365
		10.5.2 Hemocyanin and Hemerythrin	368
	10.6	Oxidation of CH ₄ , Hydrocarbons, NH ₄ ⁺	368
		10.6.1 Cytochrome P450: An Example of Cytochrome (Heme – O ₂) Redox Chemistry	369
		10.6.2 Conversion of NH ₄ ⁺ to NO ₃ ⁻ (Nitrification or Aerobic Ammonium Oxidation)	371
	10.7	Oxygen Production in Photosynthesis	372
		References	374
11	Calid	Phase Iven and Manageness Ovidents and Pedustants	277
11.	11.1	Phase Iron and Manganese Oxidants and Reductants Introduction	377 377
			377
	11.2	Reduction of Solid MnO ₂ and Fe(OH) ₃ by Sulfide	378
		11.2.1 Fe(III) and Mn(IV) Electron Configurations	
		11.2.2 MnO ₂ Reaction with Sulfide	379
	11.2	11.2.3 Fe(OH) ₃ Reaction with Sulfide	382
	11.3	Pyrite, FeS ₂ , Oxidation	384
		11.3.1 Pyrite Reacting with O ₂	384
		11.3.2 Pyrite Reacting with Soluble Fe(III)	385
		11.3.3 Pyrite Reacting with Dihalogens and Cr ²⁺	387
		References	388
12.	Meta	al Sulfides in the Environment and in Bioinorganic Chemistry	390
	12.1	Introduction	390
	12.2		391
	12.3	Nanoparticle Size and Filtration	394
	12.4	Ostwald Ripening versus Oriented Attachment	394

xiv Contents

12.5	Metal A	Availability and Detoxification for MS Species	396
12.6	Iron Su	Ifide Chemistry	396
	12.6.1	FeS _{mack} (Mackinawite)	396
	12.6.2	FeS _{mack} Conversion to Pyrite, FeS ₂	397
	12.6.3	FeS as a Catalyst in Organic Compound Formation	400
	12.6.4	FeS as an Electron Transfer Agent in Biochemistry	400
12.7	More of	n the Nitrogen Cycle (Nitrate Reduction, Denitrification, and Anammox)	402
	Append	lix 12.1 PbS Nanoparticle Model and Size Ranges of Natural Materials	404
	Referen	nces	404
13. Kine	tics and	Thermodynamics of Metal Uptake by Organisms	406
13.1	Introdu		406
	13.1.1	Conditional Metal-Ligand Stability Constants	407
	13.1.2	Thermodynamic Metal-Ligand Stability Constants	409
13.2	Metal U	Jptake Pathways	
	13.2.1	Ion Channels for Potassium	411
	13.2.2	Metal Uptake by Cells via Ligands on Membranes	413
	13.2.3	Evaluation of k_f , k_d , and $K_{\text{cond M'L'}}$ from Laboratory and Natural Samples	418
	Referen	nces	420
Index			421