CONTENTS

PREFACE		3
INTRODUCTION		
Laboratory Objectives		
General Laboratory Rules		
Safety Requirements		
Preparation for Actual Laboratory Experiment		
Report from the Measurement		
Major Part	s of Laboratory Report	8
Significant	Figures	8
Units	s laboratory maning and in consequence of an over	9
00. THE THEORY OF ERRORS		
0.1 SYSTEMATIC ERRORS		
0.1.1 Err	ors In the Calibration of the Instrument	13
012 Fr	ors Inherent in Reading the Scale	13
013 Err	rors Inherent in Sensitivity to Changes	13
0.1.0 En	curacy of Instruments for Measuring Electric Quantities	13
	MERRORS	14
	S OF INDIRECTLY MEASURED OUANTITIES	18
		20
0.4 GRAFH	ATED VADIABLES	21
0.5 COREL	ATED VARIABLES	21
		21
DESCRIPTION C	JF EXPERIMENTS	26
Exp # 1.1	Density of Solids – Hydrostatic Method	20
Exp # 1.2	Density of Liquids – Hydrostatic Method	32
Exp # 1.3	Density of Liquids – Measurement by Monr Balance	34
Exp # 1.4	Density of Liquids – Pycnometer Method	36
Exp. # 2.1	Free-Fall Acceleration	
	- Measurement by a Reverse Pendulum	38
Exp. # 3.1	Measuring the Moment of Inertia	eni •
	of an Odd Shaped Object Built as a Torsional Pendulum	42
Exp. # 4.1	Measuring Young's Modulus	• their
	from the Wire Extension	46
Exp. # 5.1	The Stokes' Method for Measuring	e the f
	the Coefficient of the Dynamic Viscosity	51
Exp. # 5.2	Measuring the Coefficient of Dynamic Viscosity	
	Using the Hőppler Viscosimeter	56
Exp. # 7.1	Linear Expansion of Pure Metals	58
Exp. # 8.1	Measuring the Specific Heat Capacity of Metals	
	Using the Calorimetric Method	61
Exp. # 8.2	Specific Heat Capacity of Liquids – Electrical Calorimeter	
Exp. # 9.1	Latent Heat of Melting Ice	68
Exp. # 9.2	Latent Heat of Evaporation	71
Exp. # 10.1	Mapping the Electric Field	73
Exp. # 12.1	Ammeter-Voltmeter Methods of Measuring Resistances	
	Straightforward Methods of Measuring Resistances	78
Exp. # 12.2	Measuring Resistances by the Wheastone Bridge	82
Exp # 12.3	Measuring Resistances by the Substitution Method	85
Exp. # 13.1	Electrolysis. The Determination of Faraday's Constant	
	and Avogadro's Number	86

CONTENTS

PR	EFACE		3
INI	Laboratory	Objectives	6
	General La	boratory Rules	6
	Safety Reg	uirements	6
	Brenaration	o for Actual Laboratory Experiment	7
	Preparation Poport from	a the Measurement	7
	Major Parts	of Laboratory Report	8
	Significant	Figures	8
	Unito	riguies	q
00			10
00.	0.1 SVSTEM		11
	0.13131EIV	and Encord	13
	0.1.1 EIIC	ors Inherent in Reading the Scale	13
	0.1.2 End	ors Inherent in Reading the Scale	13
	0.1.3 End	ors innerent in Sensitivity to Changes	13
	0.1.4 ACC	A ERRORS	14
	0.2 RANDON		14
	0.3 ERRORS		20
	0.4 GRAPHI	CAL REPRESENTATION OF EXPERIMENTAL DATA	20
	0.5 CORELA	ATED VARIABLES	21
	0.5.1 Linea	ar Correlation	21
DE	SCRIPTION O	F EXPERIMENTS	26
	Exp # 1.1	Density of Solids – Hydrostatic Method	20
	Exp # 1.2	Density of Liquids – Hydrostatic Method	34
	Exp # 1.3	Density of Liquids – Measurement by Monr Balance	34
	Exp # 1.4	Density of Liquids – Pychometer Method	30
	Exp. # 2.1	Free-Fall Acceleration	20
	- "	- Measurement by a Reverse Pendulum	30
	Exp. # 3.1	Measuring the Moment of Inertia	10
		of an Odd Shaped Object Built as a Torsional Pendulum	42
	Exp. # 4.1	Measuring Young's Modulus	16
		from the vvire Extension	40
	Exp. # 5.1	The Stokes' Method for Measuring	51
		the Coefficient of the Dynamic Viscosity	51
	Exp. # 5.2	Measuring the Coefficient of Dynamic Viscosity	56
		Using the Hoppier Viscosimeter	50
	Exp. # 7.1	Linear Expansion of Pure Metals	50
	Exp. # 8.1	Measuring the Specific Heat Capacity of Metals	61
	F # 0.0	Using the Calorimetric Method	01
	Exp. # 8.2	Specific Heat Capacity of Liquids – Electrical Calorimeter	68
	Exp. # 9.1	Latent Heat of Mening Ice	71
	Exp. # 9.2	Latent Heat of Evaporation	73
	Exp. # 10.1	Mapping the Electric Field	15
	Exp. # 12.1	Ammeter-volumeter Methods of Measuring Resistances	78
	Eve # 40.0	Straightforward Methods of Measuring Resistances	82
	Exp. # 12.2	Measuring Resistances by the Substitution Method	85
	Exp. # 12.3	Electrolycic. The Determination of Earday's Constant	00
	Exp. # 13.1	and Avogadro's Number	86

Exp. # 14.1	Sound Intensity Measurement- The Rayleigh Plate Young's Modulus	89
Exp. " · ···=	 Experimental Finding from the Speed of Sound 	95
Exp. # 16.1	Voltage-Current Characteristic of	
Слрт	A Conductor and Thermistor	99
Exp. # 17.1	Hysteresis Loop	102
Exp. # 18.1	Mapping of the Magnetic Field Lines	106
Exp. # 19.1	Self-Inductance and Mutual Inductance Measurement	110
Exp. # 20.1	The Millican Oil-Drop Experiment	
	- Measurement of Small Electric Charges	114
Exp. # 21.1	Thin Converging Lens	
	- Measurement of the Focal Length	118
Exp. # 21.2	Thin Diverging lens	
	- Measurement of the Focal Length	122
Exp. # 21.3	Thin Converging Lens	
	- The Bessel Method for the Focal Length Measurement	124
Exp. # 21.4	Thick Converging Lens	
	- The Abbe Method for the Focal Length Measurement	126
Exp. # 22.1	Wavelength Measurement	
KOLOTON (COTONAL)	Using Michelson Interferometer	128
Exp. # 22.5	Interference Pattern and Polarization Study	132
Exp. # 27.1	Activity of Alpha Radiation Source measurement	
- "	- Ionization Chamber	134
Exp. # 27.3	Absorption of Beta Radiation	141
Exp. # 27.5	Absorption of Gamma Radiation	144
Exp. # 27.6	Measurement of the Spectrum of Gamma Radiation	149
Exp. # 28.0	DAQ Systems and Three Demonstration Experiments	151
Exp. # 28.1	DAQ System Setup using GPIB and RS 232 Interface	159
Exp. # 28.2	Modular Industrial DAQ System	162
Exp. # 28.3	Universal and Mobile Multichannel DAQ System	164

REFERENCES

(I) Eva Veselá, Václav Vacek: Physics - Laboratory Experiments, CTU Publishing House, Prague 1999 (II) RNDr. Zdeněk Kohout, Ph.D a kol.: Laboratorní cvičení z fyziky, CTU Publishing House, Prague 2007 (in Czech)

(III) V. Vacek, M. Dione, M. Galuška, M. Doubrava.: The Automatic Data Acquisition System for

Calibrations with Remote Access, Proceedings of Workshop 2005, CTU Reports, [CD-ROM]. Prague: CTU, February 2005

(IV) Vacek V., Vinš V., Marek R., Doubrava M., Galuška M.: Feasibility study and pilot testing of the evaporative cooling circuit for TOTEM experiment, Proceedings of Workshop 2008, CTU Reports, [CD-ROM]. Prague: CTU, February 2008

AUTHORS

Veselá Eva: Introduction, Experiments # 1.1, 1.2, 1.3, 1.4, 2.1, 3.1, 4.1, 5.1, 5.2, 8.1, 10.1, 12.1, 12.2, 12.3, 13.1, 14.1, 14.2, 16.1, 19.1, 20.1, 21.1, 21.2, 21.3, 21.4, 27.1, 27.3, 27.5, 27.6

Vacek Václav: Experiments # 7.1, 8.2, 9.1, 9.2, 17.1, 18.1, 22.1, 22.5, 28.0, 28.1, 28.2, 28.3