Paperback Re-issue

This is an up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.

Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide variety of other areas such as set theory, geometry, algebra (in particular group theory), and computer science (e.g. logic programming and specification). Professor Hodges emphasises definability and methods of construction, and introduces the reader to advanced topics such as stability. He also provides the reader with much historical information and a full bibliography, enhancing the book's use as a reference.

		one to support and instants it, and	
	Introduction		ix
	Note on notation		xii
1	Naming of parts		1
1.1	Structures		2
1.2	Homomorphisms and substructures		5
1.3	Terms and atomic formulas		11
1.4	Parameters and diagrams		15
1.5	Canonical models		18
	History and bibliography		21
2	Classifying structures		23
2.1	Definable subsets		24
2.2	Definable classes of structures		33
2.3	Some notions from logic		40
2.4	Maps and the formulas they preserve		47
2.5	Classifying maps by formulas		54
2.6	Translations		58
2.7	Ouantifier elimination		66
2.8	Further examples		75
	History and bibliography		82
	, , , , , , , , , , , , , , , , , , , ,		
3	Structures that look alike		87
3.1	Theorems of Skolem		87
3.2	Back-and-forth equivalence		94
3.3	Games for elementary equivalence		102
3.4	Closed games		111
3.5	Games and infinitary languages		119
3.6	Clubs		124
	History and bibliography		128
	0		

4	Automorphisms	131
4.1	Automorphisms	132
4.2	Subgroups of small index	140
4.3	Imaginary elements	148
4.4	Eliminating imaginaries	157
4.5	Minimal sets	163
4.6	Geometries	170
4.7	Almost strongly minimal theories	178
4.8	Zil'ber's configuration	188
	History and bibliography	197
5	Interpretations	201
5.1	Relativisation	202
5.2	Pseudo-elementary classes	206
5.3	Interpreting one structure in another	212
5.4	Shapes and sizes of interpretations	219
5.5	Theories that interpret anything	227
5.6	Totally transcendental structures	237
5.7	Interpreting groups and fields	248
	History and bibliography	260
6	The first-order case: compactness	264
6.1	Compactness for first-order logic	265
6.2	Boolean algebras and Stone spaces	271
6.3	Types	277
6.4	Elementary amalgamation	285
6.5	Amalgamation and preservation	294
6.6	Expanding the language	300
6.7	Stability	306
	History and bibliography	318
-	high and the tornation three entering	
71	The countable case	323
7.1	Praisse's construction	323
1.2	Omitting types	333
1.3	Countable categoricity	341
1.4	w-categorical structures by Fraisse's method	348
	History and biolography	337
8	The existential case	360
8.1	Existentially closed structures	361
8.2	Two methods of construction	366
8.3	Model-completeness	374
8.4	Quantifier elimination revisited	381
8.5	More on e.c. models	391
8.6	Amalgamation revisited	400
	History and bibliography	409

9	The Horn case: products	412
9.1	Direct products	413
9.2	Presentations	420
9.3	Word-constructions	430
9.4	Reduced products	441
9.5	Ultraproducts	449
9.6	The Feferman-Vaught theorem	458
9.7	Boolean powers	466
	History and bibliography	473
10	Saturation	478
10.1	The great and the good	479
10.2	Big models exist	489
10.3	Syntactic characterisations	496
10.4	Special models	506
10.5	Definability	515
10.6	Resplendence	522
10.7	Atomic compactness	527
	History and bibliography	532
11	Combinatorics	535
11.1	Indiscernibles	536
11.2	Ehrenfeucht-Mostowski models	545
11.3	EM models of unstable theories	555
11.4	Nonstandard methods	567
11.5	Defining well-orderings	576
11.6	Infinitary indiscernibles	586
	History and bibliography	594
12	Expansions and categoricity	599
12.1	One-cardinal and two-cardinal theorems	600
12.2	Categoricity	611
12.3	Cohomology of expansions	624
12.4	Counting expansions	632
12.5	Relative categoricity	638
	History and bibliography	649
	Annendiv: Examples	653
Δ 1	Modules	653
A 2	Abelian groups	662
A 3	Nilpotent groups of class 2	673
A.4	Groups	688
A.5	Fields	695
A.6	Linear orderings	706
	References	716
	Index to symbols	710
	index to symbols	155

Contents

Index

vii