Understanding groundwater recharge is essential for successful management of water resources and modeling fluid and contaminant transport within the subsurface. This book provides a critical evaluation of the theory and assumptions that underlie methods for estimating rates of groundwater recharge. Detailed explanations of the methods are provided – allowing readers to apply many of the techniques themselves without needing to consult additional references. Numerous practical examples highlight benefits and limitations of each method and provide guidance on selection and application of methods under both ideal and less-than-ideal conditions. More than 800 references allow advanced practitioners to pursue additional information on any method.

For the first time, theoretical and practical considerations for selecting and applying methods for estimating groundwater recharge are covered in a single volume with uniform presentation. Hydrogeologists, water-resource specialists, civil and agricultural engineers, earth and environmental scientists, and agronomists will benefit from this informative and practical book, which is also a useful adjunct text for advanced courses in groundwater or hydrogeology.

For more than 30 years, **RICK HEALY** has been conducting research for the US Geological Survey on groundwater recharge, water budgets of natural and human-impacted hydrologic systems, and fluid and contaminant transport through soils. He has taught numerous short courses on unsaturated zone flow and transport, and groundwater flow modeling. He first presented a short course on methods for estimating recharge in 1994, and over the intervening 15 years the course has been presented to several hundred professionals and students. The material in that course has been expanded and refined over the years and forms the basis of *Estimating Groundwater Recharge*. Rick has authored more than 60 scientific publications and is developer of the VS2DI suite of models for simulating water, solute, and heat transport through variably saturated porous media. He is a member of the Soil Science Society of America, the American Geophysical Union, and the Geological Society of America.

COVER ILLUSTRATION: Ruby Lake National Wildlife Refuge, Nevada (D. L. Berger, US Geological Survey). COVER DESIGN: JACKIE TAYLOR

MBRIDGE

NIVERSITY PRESS

Preface pag Acknowledgments	e ix x
I Groundwater recharge	1
1.1 Introduction	1
1.2 Terminology	3
1.3 Overview of the text	4
1.4 Developing a conceptual model of recharge processes	5
1.4.1 Spatial and temporal variability in recharge	6
1.4.2 Climate	7
1.4.3 Soils and geology	8
1.4.4 Surface topography	9
1.4.5 Hydrology	9
1.4.6 Vegetation and land use	9
1.4.7 Integration of multiple factors	11
1.4.8 Use of existing data	11
1.4.9 Intersite comparison	11
1.5 Challenges in estimating recharge	12
1.5.1 Uncertainty in recharge estimates	12
1.5.2 Spatial and temporal scales of recharge estimates	12
1.5.3 Expense	13
1.6 Discussion	13
2 Water-budget methods	15
2.1 Introduction	15
2.2 Water budgets	16
2.2.1 Uncertainty in water budgets	19
2.3 Local-scale application	21
2.3.1 Precipitation	21
2.3.2 Evapotranspiration	23
2.3.3 Change in storage	24
2.3.4 Surface flow	27
2.3.5 Subsurface flow	28
2.4 Mesoscale application	31
2.4.1 Precipitation	32
2.4.2 Evapotranspiration	32
2.4.3 Change in storage	34
2.4.4 Surface flow	34
2.4.5 Subsurface flow	35
2.5 Macroscale application	38
2.5.1 Precipitation	40
2.5.2 Evapotranspiration	40
2.5.3 Change in storage	41

2.5.4 Indirect use of remotely sensed data	41
2.6 Discussion	42
3 Modeling methods	43
3.1 Introduction	43
3.1.1 Data sources	44
3.2 Model calibration and inverse modeling	45
3.3 Unsaturated zone water-budget models	47
3.3.1 Soil water-budget models	47
3.3.2 Models based on the Richards equation	50
3.4 Watershed models	52
3.4.1 Precipitation runoff modeling system (PRMS)	54
3.5 Groundwater-flow models	57
3.6 Combined watershed/groundwater-flow models	63
3.7 Upscaling of recharge estimates	66
3.7.1 Simple empirical models	66
3.7.2 Regression techniques	67 69
3.7.3 Geostatistical techniques 3.7.4 Geographical information systems	69 69
3.8 Aquifer vulnerability analysis	70
3.9 Discussion	70
	72
4 Methods based on surface-water data	74
4.1 Introduction	74
4.1.1 Groundwater/surface-water exchange	74
4.1.2 Base flow	76
4.2 Stream water-budget methods	77
4.3 Streambed seepage determination	79
4.3.1 Seepage meters	79
4.3.2 Darcy method	82
4.3.3 Analytical step-response function	82
4.4 Streamflow duration curves	82
4.5 Physical streamflow hydrograph analysis	85
4.5.1 Empirical hydrograph separation methods	85
4.5.2 Recession-curve displacement analysis	87
4.6 Chemical and isotopic streamflow hydrograph analysis	91
4.6.1 End-member mixing analysis	91
4.6.2 Tracer-injection method 4.7 Discussion	93 94
4.7 Discussion	94
5 Physical methods: unsaturated zone	97
5.1 Introduction	97
5.2 Measurement of unsaturated-zone physical properties	97
5.2.1 Soil-water content	97
5.2.2 Pressure head	99
5.2.3 Water-retention and hydraulic conductivity curves	100

5.3 Zero-flux plane method	102
5.4 Darcy methods	107
5.5 Lysimetry	110
5.6 Discussion	116
	Contract R
6 Physical methods: saturated zone	117
6.1 Introduction	117
6.1.1 Groundwater-level data	117
6.2 Water-table fluctuation method	118
6.2.1 Causes of water-table fluctuations in unconfined aquifers	119
6.2.2 Specific yield	122
6.2.3 Fractured-rock systems	127
6.3 Methods based on the Darcy equation	132
6.3.1 Theis (1937)	132
6.3.2 Hantush (1956)	132
6.3.3 Flow nets	132
6.4 Time-series analyses	133
6.5 Other methods	134
6.6 Discussion	135
7 Chemical tracer methods (by Bridget R. Scanlon)	136
7.1 Introduction	136
7.2 Tracers in the unsaturated zone	138
7.2.1 Tracer sampling: unsaturated zone	141
7.2.2 Natural environmental tracers	142
7.2.3 Historical tracers	147
7.2.4 Applied tracers	150
7.3 Groundwater tracers	152
7.3.1 Age-dating methods	153
7.3.2 Natural environmental tracers	156
7.3.3 Historical tracers	158
7.4 Discussion	164
8 Heat tracer methods	166
8.1 Introduction	166
8.2 Subsurface heat flow	166
8.2.1 Temperature measurements	169
8.3 Diffuse recharge	169
8.3.1 Diffuse drainage in the geothermal	
zone	169
8.3.2 Diffuse drainage in the surficial zone	172
8.4 Focused recharge	173
8.5 Discussion	178

9	Linking estimation methods to conceptual models of	16
	groundwater recharge	180
9.	I Introduction	180
9.:	2 Considerations in selecting methods for estimating recharge	180
9.	3 Comparison of methods	182
	4 Recharge characteristics of groundwater regions	
	of the United States	189
	9.4.1 Western Mountain Ranges	191
	9.4.2 Alluvial Basins	192
	9.4.3 Columbia Lava Plateau	194
	9.4.4 Colorado Plateau	195
	9.4.5 High Plains	195
	9.4.6 Unglaciated Central Region	197
	9.4.7 Glaciated Central Region	199
	9.4.8 Unglaciated Appalachians Region	200
	9.4.9 Glaciated Appalachians Region	200
	9.4.10 Atlantic and Gulf Coastal Plain	201
	9.4.11 Recharge in urban settings	202
9.	5 Final thoughts	203
Re	eferences	205
In	dex	238