4

Foreword				iv
Preface				vi
List of Solve	ed Ever	nnlee		vuii
List of Solve	U LAAI	npies		AVII
Chapter 1	Archi	tecture o	of Mathematical Models	1
	1.1 Introduction			
	1.1	Classif	cuon estion of Mathematical Madels in Chamical and Dialogical	1
	1.2	Engine	cation of Mathematical Models in Chemical and Biological	2
	13	Engine	Posulting in Aleshania Equational Lumnad Decompton	3
	1.5	Stoody State Models		
		1 2 1	Example of a Dhanaman alasiaal Madale The SDV	2
		1.5.1	(Sease Dedlick Kinere) Equation of State	5
		120	(Soave-Redition-Kwong) Equation of State	5
		1.3.2	Example of a Stage-wise Separation Process	0
	14	1.5.5 Modele	Example of Reactors in Series	9
	1.4	Droblers	Resulting in Ordinary Differential Equations: Initial value	10
		Problem	Concert of a Concertmental Madal	10
		1.4.1	(i) Concept of a Compartmental Model	п
			(1) One-Compartment Model of Drug Metabolism	11
			and Elimination	11
		140	(1) Iwo-Compartment Model	12
		1.4.2	Iwo-Pool Urea Kinetic Model for Haemodialysis	14
		1.4.5	Keactors in Series	10
		1.4.4	Daviag for Controlled Insulin Balance	10
1000		1 1 5	Lissid Device for Controlled Insulin Release	10
CCC	15	1.4.5 Madala	Liquid Drainage from a Two-Tank Assembly	20
	1.5	Droblan	Resulting in Ordinary Differential Equations: Boundary value	22
		1 5 1	Hast Diffusion with Conception in a Composite Culinder. The	22
		1.5.1	Shall Dalance Taskinger	22
		152	Madelling of Dia Filtration	24
		1.5.2	Modelling of a Differential Contentor for Extractive Eermontation	24
	16	1.J.J Modela	Producting of a Differential Contactor for Extractive Fermentation	20
	1.0	161	Unstandy Heat Transfer through a Pagtangular Ein	29
		1.0.1	Unsteady State Heat Conduction in a Postangular Solid	29
		1.6.2	Onsteady-State Heat Conduction in a Rectangular Solid	31
		1.0.5	Absorption of a Drug through the Skin: A Combination of	54
		1.0.4	Absorption of a Drug through the Skin. A Combination of	27
		165	Disheet Transfer The Dennes Equation	31
		1.0.5	Slow Delease of a Fortilizer through a Delymor Coating	20
		1.0.0	Slow Release of a Fertilizer through a Polymer Coating	39
		1.0.7	to Drayont 'Destancesis'	41
	17	Model	Equations In Non Dimensional Form	41
	1.7	Conche	ling Comments	44
	Evera	ise Probl	ame	43
	Refer	ences		40
	Refere	inces		39

Chapter 2	Ordinary Differential Equations and Applications			
	2.1	Introduction	61	
	2.2	Review of Solution of Ordinary Differential Equations	61	
		2.2.1 First-Order ODEs and Their Solutions	61	
		2.2.2 Modelling and Solution of Simple Physical Problems	64	
		2.2.3 Second- and Higher-Order Linear ODEs with Constant	04	
		Coefficients	74	
		2.2.4 The Cauchy–Euler Equation: A Higher-Order ODE	/4	
		with Variable Coefficients	82	
		2.2.5 Examples of Mathematical Models Leading to Second-Order ODEs	84	
		2.2.6 Modelling of Neutron Diffusion and Nuclear Heat Generation	153	
	2.3	The Laplace Transform Technique	158	
		2.3.1 Definition of Laplace Transform	158	
		2.3.2 Properties of Laplace Transform	158	
		2.3.3 Inversion of Laplace-Transform	162	
-		2.3.4 Solution of Problems Using Laplace Transform	163	
		2.3.5 Solution of a System of Linear Simultaneous ODEs	105	
		by \mathcal{L} -Transform	166	
	2.4	Matrix Method of Solution of Simultaneous ODEs	172	
	2.5	Concluding Comments	172	
	Exerc	cise Problems	170	
	Refe	rences	221	
		And Elimitation	221	
Chapter 3	Spec	ial Functions and Solution of Ordinary Differential Equations		
	with	Variable Coefficients	225	
	3.1	Introduction	225	
	3.2	The Gamma Function	225	
		3.2.1 Elementary Properties of the Gamma Function	226	
		3.2.2 Incomplete Gamma Function	227	
	3.3	The Beta Function	228	
		3.3.1 Elementary Properties of the Beta Function	228	
		3.3.2 Incomplete Beta Function	229	
	3.4	The Error Function	229	
		3.4.1 Integrals and Derivatives of Complementary Error Function	229	
		3.4.2 Error Function and Gaussian Function	230	
	3.5	The Gamma Distribution	231	
	3.6	Series Solution of Linear Second-Order ODEs with Variable Coefficients	234	
		3.6.1 A Few Definitions	234	
		3.6.2 Convergence of a Power Series	235	
		3.6.3 Series Solution at an Ordinary Point	236	
		3.6.4 Series Solution of a Second-Order ODE with Variable		
		Coefficients at a Regular Singular Point	239	
	3.7	Series Solution of Linear Second-Order ODEs Leading to Special		
		Functions	249	
		3.7.1 The Bessel Equation and Bessel Functions	250	
		3.7.2 Properties of Bessel Functions	254	
		3.7.3 Generating Function for Bessel Functions	256	
		3.7.4 Orthogonality Property of Bessel Functions	258	
		3.7.5 Modified Bessel Functions	265	
		3.7.6 Bessel Functions of the Third Kind	268	

	3.8	Legendre Differential Ed	uation and the Legendre Functions	268		
		3.8.1 General Solution	for Integral Values of the Parameter	269		
		3.8.2 Generating Fund	tion for Legendre Polynomials	271		
		3.8.3 Orthogonality of	Legendre Polynomials	272		
	3.9	Hypergeometric Functio	ns	274		
		3.9.1 Hypergeometric	Equation and Hypergeometric Functions	274		
		3.9.2 Confluent Hyper	geometric Equation and Confluent			
		Hypergeometric	Function (Kummer's Function)	276		
		3.9.3 Confluent Hyper	geometric Function of the Second Kind	277		
	3.10	Concluding Comments	provide principle possible in the day with the mostly	299		
	Exercise Problems					
	Refer	nces		311		
Chantan 4	Dert			212		
Chapter 4	Partia	Differential Equations	Further Research And Annual Control of the shorty	313		
	4.1	Introduction		313		
	4.2	Common Second-Order PDEs In Science And Engineering				
	4.3	Boundary Value Problem	18	315		
		4.3.1 A Simple Eigen	alue Problem	315		
		4.3.2 The Sturm-Liou	wille Problem (S-L Problem)	317		
	4.4	Types of Boundary Cond	litions	319		
		4.4.1 Dirichlet Bound	ary Condition or Boundary Condition			
		of the First Kind		319		
		4.4.2 Neumann Bound	lary Condition or Boundary Condition			
		of the Second K	ind	319		
		4.4.3 Robin Boundary	Condition or Boundary Condition of the Third			
		Kind		320		
A CONTRACTOR		4.4.4 Time-Dependent	Boundary Conditions – The Duhamel Theorem	320		
	4.5	Techniques of Analytica	Solution of a Second Order PDE	320		
	4.6	Examples: Use of the Te	chnique of Separation of Variables	321		
	4.7	Solution of Non-Homogo	eneous PDEs	329		
		4.7.1 Method of Parti	al Solution	329		
		4.7.2 Method of Eiger	function Expansion (or Method of Variation			
		of Parameters)	ne can a la comparte a regular parte la parte de la comparte	331		
	4.8	Similarity Solution		381		
	4.9	Moving Boundary Probl	ems	397		
		4.9.1 Modelling of a M	Aoving Boundary Problem in Heat Transfer	398		
		492 Modelling of M	oving Boundary Problems on Diffusion			
		with an Instanta	neous Reaction	402		
	4.10	Principle of Superpositio	n	411		
	4.11	Green's Function	with a strate result of Strat Science with the	427		
		4 11 1 Solution of an O	DE using Green's Functions	427		
		4 11 2 A Few Basic Pro	operties of Green's Functions	439		
		4113 Solution of High	er Dimensional Equations in Terms of Green's	1.55		
		Functions	er Dimensional Equations in Terms of Green's	439		
		4.11.4 Adjoint and Self	-Adjoint Operators and Green's Functions	440		
		4.11.5 Solution of the I	Diffusion Equation and Construction			
		of the Green's F	unction	442		
	4.12	Concluding Comments		452		
	Exercise Problems					
	Refe	nces		478		
	4					

Chapter 5	Integ	aral Transforms	481
	5.1 5.2	Introduction Definition of an Integral Transform	481 481
	5.3	Fourier Transform	485
		5.3.1 Fourier Cosine Transform and Fourier Sine Transform	485
		5.3.2 Infinite Fourier Transform	487
		5.3.3 Finite Fourier Transform	488
	5.4	Laplace Transform	493
		5.4.1 Basis of Laplace Transform and Inversion Formula	494
		5.4.2 Inversion of Laplace Transforms	495
		5.4.3 Convolution Theorem for Laplace Transform	497
	5.5	Application to Engineering Problems	504
		5.5.1 Diffusional Problems	504
ETE .		5.5.2 Advection–Dispersion Problems	535
		(i) Equation for Advection–Dispersion in a Flow Field	537
	5.6	Concluding Comments	547
	Exer	cise Problems	548
1. A -	Refe	rences	559
Chapter 6	Approximate Methods of Solution of Model Equations		
	6.1	Introduction	561
	6.2	Order Symbols	561
	6.3	Asymptotic Expansion	563
	6.4	Perturbation Methods	564
		6.4.1 Irregular or Essential Singular Point	564
		6.4.2 Regular Perturbation	565
		6.4.3 Singular Perturbation	579
	6.5	Concluding Comments	588
	Exerc	cise Problems	589
	Refe	rences	596
Answers to	Select	ed Exercise Problems	597
Appendix A	: Тор	ics in Matrices	619
Appendix B	: Four	rier Series Expansion and Fourier Integral Theorem	633
Appendix C	: Revi	iew of Complex Variables	643
Appendix D	: Sele	cted Formulas and Identities	671
Appendix E	: Brie	f Table of Inverse Laplace Transforms	677
Appendix F	: Som	e Detailed Derivations	679
Index			685

Mindified Beyord Function-