

CONTENTS

1. INTRODUCTION	9
1.1 Mechanics of Plain, Reinforced and Prestressed Concrete	9
1.2 Reinforced Concrete Members	11
1.3 Choosing Concrete as a Building Material	12
2. DESIGN PROCESS	14
2.1 Design Process	14
2.2 Design Provisions Given in EN 1990	15
2.3 Structural Safety	16
2.4 Probabilistic Methods in Design	17
2.5 Limit States and Design Situations	19
2.5.1 Limit States	19
2.5.2 Design Situations	20
2.6 Actions on Structures	20
2.6.1 Classification of Actions – Definitions	20
2.6.2 Characteristic Values of Actions	21
2.6.3 Representative Values of Actions	22
2.6.4 Design Values of Actions	23
2.6.5 Effects of Actions	24
2.6.6 Design Values of Effects	24
3. MATERIALS	29
3.1. Concrete	29
3.1.1 Definitions	29
3.1.2 Strength of Concrete	29
3.1.3 Characteristic Strength of Concrete, Strength Classes	31
3.1.4 Stress-strain Diagram	33
3.1.5 Design Compressive and Tensile Strengths	36
3.1.6 Creep	36
3.1.7 Shrinkage	39
3.2. Reinforcing Steel	40
3.2.1 General	40
3.2.2 Stress-strain Diagram	41
3.2.3 Design Characteristics of Steel	42
4. BENDING	43
4.1 Introduction	43
4.2 Bending Theory	44
4.2.1 Internal Forces in a Beam	44
4.2.2 Bending Theory for Reinforced Concrete	46
4.2.3 Basic Assumptions for the Determination of the Ultimate Resistance	49
4.3 Analysis of Reinforced Concrete Bending Members	51

4.3.1	Stress and Strain Compatibility and Equilibrium	51
4.3.2	Tension, Compression and Balanced Failures	51
4.4	Design of Rectangular Cross-section	55
4.4.1	Singly Reinforced Cross-section	55
4.4.2	Cross-section with Compression Reinforcement	60
4.5	Design of T Cross-section	63
4.5.1	T beam	63
4.5.2	Effective Flange Width	64
4.5.3	Dimensioning of T Cross-section	66
4.6	Arrangement of Reinforcement	68
5.	SHEAR	71
5.1	Shear in Beams	71
5.1.1	General	71
5.1.2	Basic Theory	72
5.1.3	Behaviour of Beams Failing in Shear	75
5.1.4	Truss Model of the Behaviour of Slender Beams	82
5.1.5	Design Procedures	86
5.2	Shear in Torsion	92
5.2.1	General	92
5.2.2	Design Procedures	92
5.2.3	Torsion Reinforcement	95
5.3	Punching	96
5.3.1	General	96
5.3.2	Load Distribution and Basic Control Perimeter	97
5.3.3	Punching Shear Calculation	99
5.3.4	Punching Shear Resistance of Slabs and Column Bases without Shear Reinforcement	102
5.3.5	Punching Shear Resistance of Slabs and Column Bases with Shear Reinforcement	103
5.3.6	Punching Shear Reinforcement	104
6.	COLUMNS - COMBINED AXIAL FORCE AND BENDING	106
6.1	Introduction	106
6.2	Tied and Spiral Columns	106
6.2.1	General	106
6.2.2	Behaviour of Tied and Spiral Columns	107
6.2.3	Strength of Axially Loaded Columns	108
6.3	Interaction Diagrams for Homogeneous Sections	109
6.4	Interaction Diagrams for Reinforced Concrete Columns	111
6.4.1	Failure of Eccentrically Loaded Members	111
6.4.2	Strain Compatibility Solution	113
6.4.3	Points of Interaction Diagram	115
6.4.4	Condition of Reliability	119
6.5	Check and Design of Section Loaded with Axial Force Acting	121

in Axis of Symmetry of Concrete Section

6.5.1. Design of Dimensions of Section	121
6.5.2. Design of Reinforcement	123
6.5.3. Check of Cross-section	129
6.6 Check of Section Loaded by Axial Force and Biaxial Moment	134
6.7 Spiral Columns	136
6.8 Detailing	137
6.8.1 Columns	137
6.8.2 Walls	138
7 SLENDER COLUMNS	140
7.1 Introduction	140
7.1.1 Definition of Slender Column	140
7.1.2 Buckling of Axially Loaded Elastic Columns	141
7.1.3 Effective Length	143
7.1.4 Slender Columns in Structures	146
7.2 Behaviour and Analysis of Pin-ended Columns	148
7.2.1 Material Failure and Stability Failure	148
7.2.2 Slender Column Interaction Curves	149
7.2.3 Second Order Deflection	150
7.2.4 Column Stiffness EI	151
7.3 Design of Slender Structures and Slender Columns	152
7.3.1 Design Procedures	152
7.3.2 Imperfections	153
7.4 Methods of Analysis	155
7.4.1 Generally	155
7.4.2 General Method	155
7.4.3 Method Based on Nominal Stiffness	156
7.4.4 Method Based on Nominal Curvature	159
8. SERVICEABILITY	165
8.1 Introduction	165
8.2 Elastic Analysis of Beam Sections	165
8.3 Cracking	170
8.3.1 Types of Cracks	170
8.3.2 Development of Cracks due to Load	172
8.3.3 Crack Control	174
8.3.4 Code Crack Control Provisions	175
8.4 Deflection Control	180
8.4.1 Load-Deflection Behaviour of Concrete Beam	180
8.4.2 Flexural Stiffness	181
8.4.3 Calculation of Deflections	183
8.4.4 Limits of Deflections	188
8.4.5 Control of Deformation by Limiting the Span/effective Depth-ratio	189
9. DETAILING OF REINFORCEMENT	192

9.1	Anchorage	192
9.1.1	Anchorage of Longitudinal Bars	192
9.1.2	Anchorage of Links and Shear Reinforcement	195
9.1.3	Anchorage by Welded Bars	195
9.1.4	Spacing of Bars	196
9.1.5	Permissible Mandrel Diameters for Bent Bars	196
9.2	Detailing of Members	197
9.2.1	General	197
9.2.2	Beams	197
9.2.3	Solid Slabs	201
9.2.4	Columns	203
9.2.5	Walls	204
ANNEX 1		205
ANNEX 2		208
ANNEX 3		209
ANNEX 4		210
ANNEX 5		214
ANNEX 6		216
REFERENCES		217