

Contents

1 Fundamentals

What do chemists do?

1.1 Chemistry: the central science

Box 1.1 The hundred thousand genome project

1.2 Measurement, units, and nomenclature

1.3 Atoms and the mole

Box 1.2 Mass spectrometry

Box 1.3 The Amesbury Archer

1.4 Chemical equations

Box 1.4 Atom efficiency and green chemistry

1.5 Working out how much you have

Box 1.5 Measuring low concentrations: parts per million

Box 1.6 Measuring dissolved oxygen in river water

1.6 Energy changes in chemical reactions

Box 1.7 Potential energy and kinetic energy

Box 1.8 Enthalpy and internal energy

Box 1.9 Butane hair stylers

1.7 States of matter and phase changes

Box 1.10 Phase changes of water

1.8 Non-covalent interactions

Box 1.11 Why is Kevlar® so strong?

1.9 Chemical equilibrium: how far has a reaction gone?

Box 1.12 Connecting equilibria and cave chemistry

Concept review

Key equations

Questions

Theories of reactions

Catalysis

Box 1.13 The Michaelis–Menten mechanism

Concept review

Key equations

Questions

10 Molecular spectroscopy

Searching for life on Mars

Introduction to molecular spectroscopy

Molecular energies and spectroscopy

Box 10.1 Particle in a one-dimensional box

xiv	2.8	General principles of spectroscopy	218
xvi	2.9	Box 10.2 Electroneutral resonance spectroscopy	219
xxi	2.10	Rotational spectroscopy	220
	2.11	Box 10.3 Raman and infrared spectroscopy	221
	2.12	— O ₂ radicals	222
	2.13	Vibrational spectroscopy	223
	2.14	Box 10.4 The simple harmonic oscillator	224
	2.15	Nuclear chemistry	225
	2.16	Box 10.5 Atomic nuclei	226
	2.17	Box 10.6 Nuclear detection	227

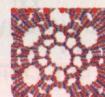
2 The language of organic chemistry

Designer medicines for treating high blood pressure: an ACE approach

2	2.1	Why are organic compounds important?	70
	Box 2.1	Friedrich Wöhler: first synthesis of a naturally occurring organic compound	71
4	2.2	Box 2.2 Some landmark laboratory syntheses of natural products	72
5	2.3	Drawing organic compounds	73
6	2.4	Carbon frameworks and functional groups	77
12	2.5	Naming organic compounds	79
14	2.6	Hydrocarbons	79
17	Box 2.3	Alkyl group substituents	81
21	Box 2.4	Is butter healthier than margarine?	86
25	2.6	Functional groups containing one or more heteroatoms	90
34	Box 2.5	The DDT dilemma	91
34	Box 2.6	An organic work-up	94
38	2.7	Pain-killing alkaloids	97
41	Box 2.8	Functional groups containing carbonyl groups	98
42	Box 2.9	Sulfonic acids and related compounds	101
43	2.8	An artificial sweetener	104
45	Concept review	Naming compounds with more than one functional group	106
47	Questions	108	
50		109	

3 Atomic structure and properties

3	3.1	Imaging atoms	112
65	3.2	The classical picture of the atom	114
66	3.3	Electromagnetic radiation and quantization	117
	Box 3.1	Radiation from the Sun	120
	3.4	Atomic spectra and the Bohr atom	124
	Box 3.2	Lighting up the sky	128
	Box 3.3	The composition of stars	131
	3.5	The nature of the electron	132
	3.6	Wavefunctions and atomic orbitals	134
	Box 3.4	The p orbitals and complex numbers	141
	Box 3.5	The shapes of the d orbitals	142


Box 3.6	3.7	Box 12.1 Ultraviolet–visible absorption	143
	3.8	Box 3.7 N–O, S–O, and C–O bonds	144
	3.9	Infrared spectroscopy	145
	3.10	Box 3.8 Nuclear magnetic resonance spectroscopy	146
	3.11	Box 12.2 Running an NMR spectrum	147

3.6	Many-electron atoms	143	5.4	Valence bond theory for polyatomic molecules	236
	Box 3.6 Electron spin resonance spectroscopy	145		Box 5.5 Ethene and the ripening of fruit	240
	Box 3.7 Exchange energy	147	5.5	Resonance	243
	Box 3.8 Atomic numbers and the Periodic Table	149	5.6	A molecular orbital approach to the bonding in polyatomic molecules	246
3.7	Atomic properties and periodicity	153	5.7	Partial molecular orbital schemes	249
3.8	Nuclear chemistry	159		Box 5.6 Boron hydrides	252
	Box 3.9 Dating the past	161		Concept review	252
	Box 3.10 Smoke detectors	163		Questions	253
	Concept review	164			
	Key equations	165			
	Questions	165			

4 Diatomic molecules

	Molecules in space	168			
4.1	Features of diatomic molecules	170	6.1	Covalent network structures	257
	Box 4.1 How can we measure bond lengths?	172		Box 6.1 Graphene, nanotubes, and nanotechnology	258
4.2	The Lewis model	173	6.2	Box 6.2 Superconductors	261
	Box 4.2 Magnetic behaviour	176	6.3	Structures based on the packing of spheres	262
4.3	Electronegativity	177	6.4	Metallic bonding	273
4.4	Valence bond theory and molecular orbital theory	178		Box 6.3 CD writers and rewriters	275
4.5	Valence bond theory	179	6.5	Structures of compounds	277
	Box 4.3 Molecular wavefunctions for H_2	180		Box 6.4 X-ray crystallography	279
	Box 4.4 Making an unreactive molecule react	182		Box 6.5 Self-cleaning windows	283
4.6	Molecular orbital theory	184	6.6	The ionic model	286
4.7	Molecular orbitals in hydrogen (H_2)	184		Calculating lattice energy	293
	Box 4.5 Linear combinations of atomic orbitals	188	6.7	Box 6.6 Determining the Madelung constant	294
4.8	Molecular orbital energy level diagrams	188		Predicting bond types	298
	Box 4.6 The formation of hydrogen molecules in space	190		Concept review	300
4.9	Linear combinations of p orbitals	193		Key equations	300
4.10	Bonding in fluorine (F_2) and oxygen (O_2)	196		Questions	300
	Box 4.7 Oxygen in the atmosphere	198			
4.11	$s-p$ mixing	200			
	Box 4.8 Measuring the energies of molecular orbitals	200			
	Box 4.9 The colours of the polar lights	203	7.1	Acids and bases in the garden	
4.12	Heteronuclear diatomics	205		Brønsted-Lowry acids and bases	304
	Box 4.10 Linear combinations of atomic orbitals in LiH	207		Box 7.1 Solvation	305
	Box 4.11 Using nitrogen monoxide to send biological signals	212	7.2	Acids, alkalis, and human tissue	307
	Concept review	213		The strengths of acids and bases	308
	Key equations	213		Box 7.3 Acidic water in disused mines	312
	Questions	213	7.3	Box 7.4 Controlling pH in a swimming pool	317
				Buffer solutions	319
			7.4	Box 7.5 Buffering in the blood	321
				pH changes in acid-base titrations	322

6 Solids

Zeolites

254

5 Polyatomic molecules

	Xenon compounds	216	7.5	Indicators	327
	Box 5.1 Representing structures	218	7.6	Oxoacids	330
5.1	The Lewis model	219	7.7	Acidic and basic oxides	334
	Box 5.2 N_2O : from laughing gas to dragsters	221		Box 7.6 Cooking with acids and bases	334
5.2	Valence shell electron pair repulsion theory	223	7.8	Lewis acids and bases	336
	Box 5.3 The fluorinating ability of ClF_3 and BrF_3	229		Box 7.7 Superacids	337
	Box 5.4 Nitrates in water	232		Concept review	338
5.3	Bond polarity and polar molecules	235		Key equations	339
				Questions	339

7 Acids and bases

302

8 Gases

Breathing under water

8.1	The gas laws: an empirical approach	345
8.2	Using the ideal gas equation	349
	Box 8.1 Car air bags	353
8.3	Mixtures of gases	355
8.4	Kinetic molecular theory and the gas laws	358
	Box 8.2 Calculating the pressure of a gas from the kinetic theory	360
8.5	The speeds of molecules in a gas	362
	Box 8.3 Measuring the distribution of speeds in a gas	364
	Box 8.4 Enriching uranium: a practical application of effusion	367
8.6	Real gases	372
	Concept review	378
	Key equations	378
	Questions	378

9 Reaction kinetics

Methane in the troposphere

9.1	Why study reaction kinetics?	384
9.2	What is meant by the rate of a reaction?	384
9.3	Monitoring the progress of a reaction	388
9.4	Elementary reactions	389
	Box 9.1 Deriving the integrated rate equation for a first order reaction	393
	Box 9.2 Deriving the integrated rate equation for a second order reaction	394
	Box 9.3 Atmospheric lifetime of methane	400
	Box 9.4 Using flash photolysis to monitor ClO^{\bullet} radicals	403
9.5	Complex reactions: experimental methods	405
	Box 9.5 The stopped-flow technique	406
	Box 9.6 Deriving the integrated rate equation for a zero order reaction	412
	Box 9.7 Pharmacokinetics	412
9.6	Complex reactions: reaction mechanisms	416
9.7	Effect of temperature on the rate of a reaction	425
9.8	Theories of reactions	432
9.9	Catalysis	437
	Box 9.8 The Michaelis–Menten mechanism	440
	Concept review	442
	Key equations	442
	Questions	443

10 Molecular spectroscopy

Searching for life on Mars

10.1	Introduction to molecular spectroscopy	450
10.2	Molecular energies and spectroscopy	453
	Box 10.1 Particle in a one-dimensional box	454

10.3	General principles of spectroscopy	458
	Box 10.2 Lasers	464
10.4	Rotational spectroscopy	466
	Box 10.3 Using rotational spectroscopy to monitor ClO^{\bullet} radicals in the atmosphere	474
10.5	Vibrational spectroscopy	476
	Box 10.4 The simple harmonic oscillator model for a diatomic molecule	479
	Box 10.5 Atmospheric concentrations of carbon dioxide	485
	Box 10.6 Degrees of freedom and normal modes of vibration	486
10.6	Electronic spectroscopy	491
	Box 10.7 Electronic spectroscopy and colour	491
10.7	Spin resonance spectroscopy	496
	Box 10.8 Spin-spin coupling in NMR spectra	503
	Box 10.9 Magnetic resonance imaging (MRI)	507
	Concept review	509
	Key equations	510
	Questions	510

11 Analytical chemistry

Drugs, sport, and analytical chemistry

11.1	Carrying out an analysis	515
	Box 11.1 Analysing food contaminants	522
11.2	Electrochemical methods of analysis	523
	Box 11.2 Rapid blood analysis using electrochemical methods	526
11.3	Chromatography	528
	Box 11.3 Monitoring PCBs in the environment	537
	Box 11.4 Gas chromatography-mass spectrometry (GC-MS)	538
	Box 11.5 Chiral HPLC	541
11.4	Spectroscopic methods of analysis	542
	Box 11.6 Alcohol analysis and drink-driving	542
	Box 11.7 A pulse oximeter	546
11.5	Atomic spectrometry	547
	Box 11.8 Why is the temperature so important in atomic emission spectrometry?	547
	Concept review	553
	Key equations	553
	Questions	553

12 Molecular characterization

Using isotope ratios to analyse orange juice

12.1	Mass spectrometry	558
	Box 12.1 Ionization methods	560
	Box 12.2 Using tandem mass spectrometry in newborn screening	568
12.2	Infrared spectroscopy	570
12.3	Nuclear magnetic resonance spectroscopy	578
	Box 12.3 Running an NMR spectrum	579

Box 12.4 Magnetic field strength and resolution	580	Key equations	691
Box 12.5 Drawing a ^1H NMR spectrum	594	Questions	692
12.4 Structure determination using a combination of techniques	599		
Box 12.6 Determining degrees of unsaturation	600		
Concept review	605		
Questions	606		
13 Energy and thermochemistry	610	15 Chemical equilibrium	694
Launching the Space Shuttle		Equilibria in the oceans	
13.1 Energy changes in chemistry: heat and work	612	15.1 Gibbs energy and equilibrium	697
Box 13.1 James Joule and the equivalence of heat and work	613	Box 15.1 Solubility equilibria	701
13.2 Enthalpy and enthalpy changes	619	15.2 The direction of a reaction: the reaction quotient	702
Box 13.2 Which freezes first, hot water or cold?	621	Box 15.2 Equilibrium in fizzy water	704
13.3 Enthalpy changes in chemical reactions	622	15.3 Gibbs energy and equilibrium constants	705
Box 13.3 Comparing fuels	628	Box 15.3 Deriving the relationship between $\Delta_f G^\ominus$ and K	706
Box 13.4 Thermochemistry for faster food	629	Box 15.4 Contrails from jet aircraft	707
13.4 Variation of enthalpy with temperature	633	15.4 Calculating the composition of a reaction at equilibrium	710
Box 13.5 Deriving the Kirchhoff equation	635	Box 15.5 Chalk, lime, and mineral water: an example of heterogeneous equilibrium	713
13.5 Internal energy and the First Law of thermodynamics	636	15.5 Effect of conditions on reaction yields and K	713
Box 13.6 Isothermal expansion of an ideal gas	638	15.6 Applying the thermodynamics in Chapters 13, 14, and 15	719
Box 13.7 Nitroglycerine: the chemistry of an explosive	643	Box 15.6 A case study in reaction thermodynamics: the Haber process	720
13.6 Measuring energy changes	644	Concept review	721
Box 13.8 Calorimetry, food, and metabolism	648	Key equations	721
Concept review	650	Questions	721
Key equations	650		
Questions	651		
		16 Electrochemistry	726
		Electrical energy on the move	
14.1 What are spontaneous processes?	656	16.1 What is electrochemistry?	728
14.2 Entropy and the Second Law of thermodynamics	660	16.2 Ions in solution	730
Box 14.1 Variation of the entropy of a substance with temperature	663	Box 16.1 Ultrapure water and conductivity	733
14.3 The Third Law and absolute entropies	664	16.3 Electrochemical cells	735
Box 14.2 Determination of standard entropy, S_{298}^\ominus	665	Box 16.2 Electrochemical cells as portable energy sources	737
Box 14.3 What is the lowest temperature that can be reached?	668	Box 16.3 Practical measurement of E^\ominus values	745
14.4 Entropy changes in chemical reactions	669	16.4 Thermodynamics of electrochemical cells	746
Box 14.4 What happens when proteins don't fold correctly?	673	Box 16.4 Corrosion as an electrochemical process	751
14.5 Gibbs energy	675	Box 16.5 Bioelectrochemistry: nerve cells and ion channels	754
Box 14.5 Gibbs energy: the balance between enthalpy change and entropy change	677	16.5 Electrolysis	755
Box 14.6 Thermodynamics of addition polymerization	679	Box 16.6 Electrolysis and rechargeable batteries	759
Box 14.7 Obtaining silicon for use in silicon chips	682	Concept review	761
Box 14.8 Energetics of biochemical reactions	683	Key equations	761
Box 14.9 How much work can you get from glucose?	685	Questions	761
14.6 Variation of Gibbs energy with conditions	686		
Box 14.10 Obtaining metals from ores	689		
Concept review	691		
		17 Phase equilibrium and solutions	764
		Supercritical fluids	
17.1 Phase behaviour of single components	766		
Box 17.1 Liquid crystals	773		
17.2 Quantitative treatment of phase transitions	775		
Box 17.2 Deriving the Clapeyron equation	777		
Box 17.3 Deriving the Clausius-Clapeyron equation	780		

23 Aldehydes and ketones: nucleophilic addition and α -substitution reactions

Rhodopsin and vision

23.1	The structure and reactions of aldehydes and ketones	1056
	Box 23.1 Cortisone and cortisol	1060
23.2	Nucleophilic addition reactions of aldehydes and ketones	1061
	Box 23.2 Oxidizing alcohols to carbonyls	1064
	Box 23.3 Hydride transfer in nature	1066
	Box 23.4 A short history of organometallics	1069
	Box 23.5 The structure of glucose	1073
	Box 23.6 Imines and hydrazone in organic synthesis	1079
23.3	α -Substitution reactions of aldehydes and ketones	1082
23.4	Carbonyl–carbonyl condensation reactions	1089
	Concept review	1095
	Questions	1095

24 Carboxylic acids and derivatives: nucleophilic acyl substitution and α -substitution reactions

PET plastics

24.1	Structure and reactions of carboxylic acids and derivatives	1100
	Box 24.1 Oxytocin, the hormone of love	1100
	Box 24.2 Relative reactivity of carboxylic acid derivatives	1103
24.2	Nucleophilic acyl substitution reactions	1107
	Box 24.3 Fragrant esters	1109
	Box 24.4 Halogenation of carboxylic acids	1110
	Box 24.5 Combinatorial chemistry	1115
	Box 24.6 Making soap	1120
	Box 24.7 Hydrolysis of nitriles to form carboxylic acids	1125
24.3	α -Substitution and carbonyl–carbonyl condensation reactions	1126
	Concept review	1134
	Questions	1134

25 Hydrogen

The planet Jupiter

25.1	Elemental hydrogen	1140
	Box 25.1 The hydrogen economy	1141
25.2	Compounds of hydrogen	1143
	Box 25.2 Periodicity	1145
	Box 25.3 Hydrogen storage	1147
	Box 25.4 Hydrofluoric acid	1154
25.3	Hydrogen bonding	1156
	Box 25.5 Hydrogen bonding and life	1158
	Box 25.6 Burning ice	1161

25.4	Isotope effects	1162
	Box 25.7 Tritium	1162
	Concept review	1165
	Key equations	1165
	Questions	1165

26 s-Block chemistry

Biominerals

26.1	The Group 1 elements	1170
26.2	Group 1 compounds	1172
	Box 26.1 Why is sodium peroxide more stable to heating than lithium peroxide?	1174
	Box 26.2 Is salt bad for you?	1177
26.3	Group 1 ions in solution	1180
26.4	Group 1 coordination chemistry	1181
26.5	Reaction of Group 1 metals with liquid ammonia	1182
26.6	The Group 2 elements	1183
	Box 26.3 Building materials	1185
26.7	Group 2 compounds	1186
	Box 26.4 Hard water	1191
26.8	Group 2 coordination chemistry	1192
	Box 26.5 Chlorophylls	1192
26.9	Lithium and beryllium as exceptional elements	1194
26.10	Organometallic compounds	1195
26.11	Diagonal relationships	1196
	Concept review	1197
	Questions	1198

27 p-Block chemistry

Photochemical smog

27.1	General aspects and trends in the p block	1203
27.2	Group 13: boron, aluminium, gallium, indium, and thallium	1209
	Box 27.1 Recycling aluminium	1211
27.3	Group 14: carbon, silicon, germanium, tin, and lead	1216
	Box 27.2 The greenhouse effect and global warming	1218
	Box 27.3 Silicones—shiny hair and cosmetic surgery	1220
27.4	Group 15: nitrogen, phosphorus, arsenic, antimony, and bismuth	1223
	Box 27.4 Fluxional molecules	1230
	Box 27.5 Firearms and forensic science	1231
27.5	Group 16: oxygen, sulfur, selenium, tellurium, and polonium	1232
	Box 27.6 The ozone layer	1233
	Box 27.7 Sulfur on Io	1235
27.6	Group 17: fluorine, chlorine, bromine, iodine, and astatine	1240
	Box 27.8 Chlorofluorocarbons and the ozone hole	1241
27.7	Group 18: helium, neon, argon, krypton, xenon, and radon	1248
	Box 27.9 Using argon to date rocks	1249

27.8 <i>p</i> -Block organometallic chemistry	1251	Maths toolkit	1303
Concept review	1252		
Questions	1253		
28 <i>d</i>-Block chemistry	1254		
Colouring with metal pigments			
Box 28.1 Technetium and imaging the brain	1257	Appendix 4	1338
28.1 The <i>d</i> -block elements	1258	Appendix 5	1340
28.2 Chemistry of the first row <i>d</i> -block elements	1263	Appendix 6	1348
28.3 Coordination chemistry	1265	Appendix 7	1352
Box 28.2 The extraction of gold	1268	Thermodynamic data for organic and inorganic compounds	
Box 28.3 Platinum anti-cancer drugs	1275	Appendix 8	1363
Box 28.4 Coordination network structures	1278	Ionic, atomic, and van der Waals radii for selected elements	
28.4 Crystal field theory	1279	Appendix 9	1366
28.5 Filling the <i>d</i> orbitals	1282	Appendix 10	1368
28.6 Colour in coordination compounds	1289	Appendix 11	1371
28.7 Magnetic properties	1292	Answers	1372
Box 28.5 Ferromagnetism and recording information	1293	Index	1385
28.8 Aqueous chemistry of the first row <i>d</i> -block ions	1295	Figure acknowledgements	1406
Box 28.6 Trapping metal ions using the chelate effect	1296	The Greek alphabet	1410
Box 28.7 Haemoglobin and the transport of oxygen	1298	SI multiplication prefixes	1410
Concept review	1300	Physical constants	1410
Key equations	1301		
Questions	1301		

- Updated examples of applications to illustrate chemical principles.
- More detailed explanation in places to further clarify, for example, some of the more challenging reaction mechanisms.
- Inclusion of a greater number of worked examples in the text.

Underpinning knowledge

We have used diagrams of common molecules and structures throughout the text to help students understand what each component does in a reaction. We have also included a 'Maths toolkit' at the back of the book to help students with what each component does in a reaction. We have also included a 'Maths toolkit' at the back of the book to help students with what each component does in a reaction.

Answers

Answers to all questions in the text are provided at the end of the book.

Index

An index is provided at the end of the book.

Figure acknowledgements

Figure acknowledgements are provided at the end of the book.

The Greek alphabet

The Greek alphabet is provided at the end of the book.

SI multiplication prefixes

SI multiplication prefixes are provided at the end of the book.

Physical constants

Physical constants are provided at the end of the book.