CONTENTS

1	INTE	RODUCTION	5
2	VOR	TEX BREAKDOWN	6
	2.1 2.2 2.3	Theories for explanation of vortex breakdown 2.2.1 Analogy to boundary layer separation	.7 .8 .8 .8
3	PRO	PER ORTHOGONAL DECOMPOSITION1	0
4	SWI	RLING FLOW IN AN ENCLOSED CYLINDER1	12
	4.1 4.2 4.3	Low Reynolds number flows 4.2.1 Computational modeling. 4.2.2 Vorticity dynamics. 4.2.3 Experimental investigation of low Reynolds number flows Investigation of high Reynolds number flows 4.3.1 Computational modeling. 4.3.2 Experimental investigation	13 14 15 16 16
5	VOR	TEX ROPE IN HYDRAULIC TURBINE DRAFT TUBE	19
	5.1 5.2 5.3	Spectral properties of the draft tube flows	22 23 23 24 25
6	CON	ICLUSION	27
R	2.2 Theories for explanation of vortex breakdown7 $2.2.1$ Analogy to boundary layer separation.8 $2.2.2$ Concept of critical state.8 $2.2.3$ Flow instability.8 $2.2.4$ Simple criteria for vortex breakdown detection.82.3 Methods for computation of the vortex breakdown.9PROPER ORTHOGONAL DECOMPOSITION.10SWIRLING FLOW IN AN ENCLOSED CYLINDER.124.1 Introduction.124.2 Low Reynolds number flows.13 $4.2.1$ Computational modeling.13 $4.2.2$ Vorticity dynamics.14 $4.2.3$ Experimental investigation of low Reynolds number flows.154.3 Investigation of high Reynolds number flows.16 $4.3.1$ Computational modeling.16 $4.3.2$ Experimental investigation.18VORTEX ROPE IN HYDRAULIC TURBINE DRAFT TUBE.195.1 Computational modeling.205.2 Spectral properties of the draft tube flows.225.3 Proper orthogonal decomposition of the draft tube flows.235.3.1 Operating point $90\%Q_{BEP}$ (longitudinal cross-section).235.3.2 Operating point $90\%Q_{BEP}$ (circular cross-section).245.3.3 Operating point $70\%Q_{BEP}$ (circular cross-section).25		
A			