CHAPTER I. INTRODUCTION	gune a	1
Scratch hardness	Stas to Ct	1
Static indentation hardness	V sar	3
Dynamic hardness	NOE	4
Area of contact	blei'i	4
CHAPTER II. HARDNESS MEASUREMENTS BY SPHERIC	CAL	
INDENTERS	blei	6
Brinell hardness	Jeriva	6
Meyer's law	M of	8
Comparison of Brinell and Meyer hardness	Brinell	11
Validity of Meyer's law	V atra	12
Effect of surface roughness	NOE	14
'Shallowing' of the indentation	DIVO	14
'Piling-up' and 'sinking-in'	ollow	15
'Strainless' indentation	Shallo	15
Ultimate tensile strength and Brinell hardness number	distaic	16
CHAPTER III. DEFORMATION AND INDENTATION IDEAL PLASTIC METALS	OF	19
Stress and strain	7 833	19
True stress-strain curves under tension	a state	21
True stress-strain curves under tension and compression	SUMME	24
Nominal stress-strain curves under tension		26
Plastic deformation under combined stresses	goons.	28
Conditions for two-dimensional plastic flow	endant.	30
Deformation of an 'ideal' plastic metal by a flat punch	denilari	34
Effect of friction	nahn	37
Deformation by a flat circular punch	arms All	40
CHAPTER IV. DEFORMATION OF METALS BY SPHERIC	CAL	
INDENTERS. IDEAL PLASTIC METALS	HORA!	44
Onset of plastic deformation		46
Complete or full plastic deformation	V SET	47
Pressure-load characteristic	ndent	49
Range of validity of Meyer's law	n me	51

Deformation of the indenter		. 54
Brinell hardness measurement of very hard metals		. 55
Effect of surface roughness		61
'Piling-up' and 'sinking-in'	· Par	64
'Strainless' indentation	l jejni Leletor	65
CHAPTER V. DEFORMATION OF METALS BY SPHER	RICAL	86
INDENTERS. METALS WHICH WORK-HARDE	N .	67
Yield pressure as a function of the size of the indentat	tion .	67
Co-ordination of results		69
Yield pressure as a function of the stress-strain charact	eristic	69
Yield pressure and stress-strain curves for deformed a	metals	74
Derivation of Meyer's laws	. Harr	76
The Meyer index and the stress-strain index .	N TOU	78
Brinell hardness and ultimate tensile strength .	Talqa	79
CHAPTER VI. DEFORMATION OF METALS BY SPHER	RICAL	AT .
INDENTERS. 'SHALLOWING' AND ELASTIC		
COVERY'	wolth	84
Cyclic deformation of 'recovered' indentations .	il-mail	84
'Shallowing' and elastic 'recovery'		
Distribution of stresses	otaqui	88
Released elastic stresses and the adhesion of metals		90
Processes involved in the Brinell test	III a	93
CHAPTER VII. HARDNESS MEASUREMENTS WITH (CONI-	Œ .
CAL AND PYRAMIDAL INDENTERS	as me	95
Conical indenters	rite en	95
Pyramidal indenters	rtis on	97
Knoop indenter	Lanion	100
Indentation of an ideal plastic metal by a wedge-s	shaped	
indenter	polition	101
Indentation by conical and pyramidal indenters.	amio)	103
Indentation of metals which work-harden	10 106	105
Pin-cushion and barrel-shaped indentations .	amrot	106
Vickers hardness number and ultimate tensile strength	1 .	107
Rockwell and Monotron hardness	.VL m	107
The meaning of hardness: the Vickers and Brinell test	DEN	112
CHAPTER VIII. DYNAMIC OR REBOUND HARDNESS	3 .	115
Indentation produced by impact	. 40	115
Four main stages of impact		116

•	120 121 125
•	
•	125
•	
	126
0.	129
me.	130
POSIT P	132
	133
	137
	138
	141
	141
	143
	145
	146
	147
	148
	150
	155
The con	158
recio	160
dia	164
	166
th t	167
eir c	172
YTE	173