Contents

List of boxes	xxii			
Reviewer acknowledgments				
Chapter 1 History and basic concepts	1			
The origins of developmental biology	З			
1.1 Aristotle first defined the problem of				
epigenesis versus preformation	З			
Box 1A Basic stages of Xenopus laevis development	4			
1.2 Cell theory changed how people thought about embryonic development and heredity	4			
1.3 Two main types of development were originally proposed	6			
Box 1B The mitotic cell cycle	7			
1.4 The discovery of induction showed that one group of cells could determine the development of neighboring cells	8			
1.5 Developmental biology emerged from the coming together of genetics and embryology	8			
1.6 Development is studied mainly through selected model organisms	9			
1.7 The first developmental genes were identified as				
spontaneous mutations	11			
Summary	13			
A conceptual tool kit	13			
1.8 Development involves the emergence of pattern, change in form, cell differentiation, and growth	14			
Box 1C Germ layers	15			
1.9 Cell behavior provides the link between gene action and				
developmental processes	17			
1.10 Genes control cell behavior by specifying which proteins are made	17			
1.11 The expression of developmental genes is under tight control	19			
Box 1D Visualizing gene expression in embryos	20			
1.12 Development is progressive and the fates of cells become determined at different times	22			
1.13 Inductive interactions make cells different from each other	24			
Box 1E Signal transduction and intracellular signaling pathways	26			
1.14 The response to inductive signals depends on the state of the cell	26			

1.15 Patterning can involve the interpretation	
of positional information	27
Box 1F When development goes awry	28
1.16 Lateral inhibition can generate spacing patterns	30
1.17 Localization of cytoplasmic determinants and asymmetric cell division can make daughter cells different from each other	30
1.18 The embryo contains a generative rather than a descriptive program	31
1.19 The reliability of development is achieved by various means	32
1.20 The complexity of embryonic development is due to the complexity of cells themselves	32
1.21 Development is a central element in evolution	33
Summary	34
Summary to Chapter 1	34
Chapter 2 Development of the Drosophila	
body plan	37
Drosophila life cycle and overall development	38
2.1 The early <i>Drosophila</i> embryo is a multinucleate syncytium	38
2.2 Cellularization is followed by gastrulation and segmentation	40
2.3 After hatching, the <i>Drosophila</i> larva develops through several larval stages, pupates, and then undergoes metamorphosis to become an adult	41
2.4 Many developmental genes were identified in <i>Drosophila</i> through induced large-scale genetic screening	41
Box 2A Mutagenesis and genetic screening strategy for identifying developmental mutants in Drosophila	43
Summary	44
Setting up the body axes	44
2.5 The body axes are set up while the <i>Drosophila</i> embryo is still a syncytium	44
2.6 Maternal factors set up the body axes and direct the early stage of <i>Drosophila</i> development	46
2.7 Three classes of maternal genes specify the antero-posterior axis	46
2.8 Bicoid protein provides an antero-posterior gradient of a morphogen	46
2.9 The posterior pattern is controlled by the gradients of Nanos and Caudal proteins	49

xiv Contents

1

2.10 The anterior and posterior extremities of the embryo are specified by activation of a cell-surface receptor		
	50	Z. de
2.11 The dorso-ventral polarity of the embryo is specified by		
localization of maternal proteins in the egg vitelline envelope	51	2.
2.12 Positional information along the dorso-ventral axis		
is provided by the Dorsal protein	52	lo
Summary	53	
Box 2B The Toll signaling pathway: a multifunctional pathway	54	2.
Localization of maternal determinants during oogenesis	54	in
2.13 The antero-posterior axis of the Drosophila egg is		
specified by signals from the preceding egg chamber and	FF	S
by interactions of the oocyte with follicle cells	55	S
Box 2C The JAK-STAT signaling pathway	57	2.
2.14 Localization of maternal mRNAs to either end of the egg depends on the reorganization of the oocyte cytoskeleton	58	z. re
2.15 The dorso-ventral axis of the egg is specified by		2.
movement of the oocyte nucleus followed by signaling		of
between oocyte and follicle cells	60	2.
Summary	60	th
Patterning the early embryo	61	2.
2.16 The expression of zygotic genes along the		ot
dorso-ventral axis is controlled by Dorsal protein	61	Si
2.17 The Decapentaplegic protein acts as a morphogen to pattern the dorsal region	64	S
2.18 The antero-posterior axis is divided up into broad		C
regions by gap-gene expression	66	
210 The bigoid exertain exercision and strend strend for		C \
2.19 The bicoid protein provides a positional signal for		C) Ve
the anterior expression of zygotic hunchback	66	Ve
the anterior expression of zygotic <i>hunchback</i>2.20 The gradient in Hunchback protein activates		
the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes	68	Vе З.
 the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation 	68 69	Ve 3. st
 the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening 	68 69 70	Ve 3. st 3.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary 	68 69	V(3. st 3. m
 the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening 	68 69 70	V(3. st 3. 3. X(3. 3.
the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the	68 69 70 71	V 3. st 3. m 3. X 0. 0.
the anterior expression of zygotic <i>hunchback</i> 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments	68 69 70 71	V(3. st 3. 3. X(3. 3.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule 	68 69 70 71 71 72	V(3. st 3. 3. 3. 3. 3. 0. 3. 10. 3. 10. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 	68 69 70 71 71	V(3. st 3. m 3. X(3. ov 3. in' ex 3.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule 	68 69 70 71 71 72	V(3. st 3. 3. 3. 3. 3. 0. 3. 10. 3. 10. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 2.23 Some insects use different mechanisms for patterning 	68 69 70 71 71 72 72	V(3. st 3. 3. 3. 3. 3. 0. 3. 10 3. 10 5. 10 5. 10 10 10 10 10 10 10 10 10 10 10 10 10
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 2.23 Some insects use different mechanisms for patterning the body plan 	68 69 70 71 71 72 72 75	V(3. st 3. 3. 3. 3. 3. 3. 10 5. 5. 5.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 2.23 Some insects use different mechanisms for patterning the body plan Summary Segmentation genes and segment patterning 2.24 Expression of the <i>engrailed</i> gene defines the 	68 69 70 71 71 72 72 72 75 77	V(3. st 3. m 3. X(3. ov 3. in ex 3. to EX V(
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 2.23 Some insects use different mechanisms for patterning the body plan Summary Segmentation genes and segment patterning 2.24 Expression of the <i>engrailed</i> gene defines the boundary of a parasegment which is also a boundary of 	68 69 70 71 71 72 72 75 77 77	V(3. st 3. 3. 3. 3. 3. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
 the anterior expression of zygotic hunchback 2.20 The gradient in Hunchback protein activates and represses other gap genes Box 2D P-element-mediated transformation Box 2E Targeted gene expression and misexpression screening Summary Activation of the pair-rule genes and the establishment of parasegments 2.21 Parasegments are delimited by expression of pair-rule genes in a periodic pattern 2.22 Gap-gene activity positions stripes of pair-rule gene expression 2.23 Some insects use different mechanisms for patterning the body plan Summary Segmentation genes and segment patterning 2.24 Expression of the <i>engrailed</i> gene defines the 	68 69 70 71 71 72 72 72 75 77	Ve 3. st 3. 3. 3. ov 3. ov 3. in ex 5. to E> Ve

2.26 Signals generated at the parasegment boundary delimit and pattern the future segments	79
Box 2F The Hedgehog signaling pathway	82
2.27 Compartment boundaries persist into the adult fly	83
Box 2G Mutants in denticle pattern provided clues to the logic of segment patterning	84
Box 2H Genetic mosaics and mitotic recombination	86
2.28 Insect epidermal cells become individually polarized in an antero-posterior direction in the plane of the epithelium	87
Box 21 Planar cell polarity in Drosophila	88
Summary	89
Specification of segment identity	90
2.29 Segment identity in <i>Drosophila</i> is specified by Hox genes	91
2.30 Homeotic selector genes of the bithorax complex are responsible for diversification of the posterior segments	92
2.31 The Antennapedia complex controls specification of anterior regions	93
2.32 The order of Hox gene expression corresponds to the order of genes along the chromosome	93
2.33 The Drosophila head region is specified by genes	
other than the Hox genes	94
Summary	94
Summary to Chapter 2	95
Chapter 3 Vertebrate development I: life	
cycles and experimental techniques	103
Vertebrate life cycles and outlines of development	104
3.1 The frog <i>Xenopus laevis</i> is the model amphibian for studying development of the body plan	107
3.2 The zebrafish embryo develops around a large mass of yolk	111
3.3 Birds and mammals resemble each other and differ from <i>Xenopus</i> in some important features of early development	113
3.4 The early chicken embryo develops as a flat disc of cells overlying a massive yolk	114
3.5 The mouse egg has no yolk and early development involves the allocation of cells to form the placenta and extra-embryonic membranes	119
3.6 The early development of a human embryo is similar to that of the mouse	123

	125
Experimental approaches to studying	
vertebrate development	125
Box 3A Preimplantation genetic diagnosis	126
Box 3B Gene-expression profiling by DNA microarrays	
and RNA seg	128

3.7 Fate mapping and lineage tracing reveal what parts of the

body cells in the early embryo give rise to which adult structures 129

Contents XV

3.8 Not all techniques are equally applicable to all vertebrates	131
3.9 Developmental genes can be identified by spontaneous mutation and by large-scale mutagenesis screens	132
	TJC
Box 3C Large-scale mutagenesis screens for recessive mutations in zebrafish	134
	104
3.10 Transgenic techniques enable animals to be produced with mutations in specific genes	135
Box 3D The Cre/loxP system: a strategy for making gene	
knock-outs in mice	138
3.11 Gene function can also be tested by transient	
transgenesis and gene silencing	139
3.12 Gene regulatory networks in embryonic	
development can be revealed by chromatin immunoprecipitation	
techniques	139
Summary to Chapter 3	140
Chapter 4 Vertebrate development II: Xenopus and zebrafish	1 4 4
	144
Setting up the body axes	145
4.1 The animal-vegetal axis is maternally determined	
in Xenopus	145
Box 4A Intercellular protein signals in vertebrate	
development	147
Box 4B The Wnt/β-catenin signaling pathway	148
4.2 Local activation of Wnt/ β -catenin signaling specifies the future dorsal side of the embryo	149
4.3 Signaling centers develop on the dorsal side	
of the blastula	151
Summary	152
The origin and specification of the germ layers	152
4.4 The fate map of the <i>Xenopus</i> blastula makes clear	
the function of gastrulation	153
4.5 Cells of the early <i>Xenopus</i> embryo do not yet have their	
fates determined and regulation is possible	154
4.6 Endoderm and ectoderm are specified by maternal factors,	
whereas mesoderm is induced from ectoderm by signals from	
the vegetal region	154
Box 4C Signaling by members of the TGF- β family of	
growth factors	157
4.7 Mesoderm induction occurs during a limited period	
in the blastula stage	157
4.8 Zygotic gene expression is turned on at the mid-blastula transition	158
4.9 Mesoderm-inducing and patterning signals are	
produced by the vegetal region, the organizer, and the	
ventral mesoderm	159
4.10 Members of the TGF- β family have been identified as	
mesoderm inducers	160

d

Box 4D Investigating receptor function using dominant-negative mutations	161
4.11 The zygotic expression of mesoderm-inducing and patterning signals is activated by the combined actions of	1.51
maternal VegT and Wnt signaling	161
4.12 Threshold responses to gradients of signaling protei are likely to pattern the mesoderm	ns 162
Summary	164
The Spemann organizer and neural induction	164
Box 4E The FGF signaling pathway	165
4.13 Signals from the organizer pattern the	
mesoderm dorso-ventrally by antagonizing the effects	
of ventral signals	166
4.14 The antero-posterior axis of the embryo emerges	4.67
during gastrulation	167
4.15 The neural plate is induced in the ectoderm	169
4.16 The nervous system is patterned along the	177
antero-posterior axis by signals from the mesoderm	172
4.17 The final body plan emerges by the end of gastrulat and neurulation	ion 173
Summary	174
Development of the body plan in zebrafish	174
4.18 The body axes in zebrafish are established by	
maternal determinants	175
4.19 The germ layers are specified in the zebrafish	
blastoderm by similar signals to those in Xenopus	175
4.20 The shield in zebrafish is the embryonic organizer	
like the Spemann organizer in Xenopus	177
Summary to Chapter 4	178
Chapter 5 Vertebrate development III: Chick	105
and mouse-completing the body plan	185
Development of the body plan in chick and mouse	186
I upo aptoro postorior polarity of the shick blastedorm	

5.2 Early stages in mouse development establish separate cell lineages for the embryo and the extra-embryonic structures1885.3 Movement of the anterior visceral endoderm indicates the definitive antero-posterior axis in the mouse embryo1925.4 The fate maps of vertebrate embryos are variations on a basic plan193Box 5A Fine-tuning Nodal signaling1945.5 Mesoderm induction and patterning in the chick and mouse occurs during primitive-streak formation1965.6 The node that develops at the anterior end of the streak196	5.1 The antero-posterior polarity of the chick blastoderm is related to the primitive streak	186
definitive antero-posterior axis in the mouse embryo1925.4 The fate maps of vertebrate embryos are variations on a basic plan193Box 5A Fine-tuning Nodal signaling1945.5 Mesoderm induction and patterning in the chick and mouse occurs during primitive-streak formation1965.6 The node that develops at the anterior end of the streak196		188
a basic plan193Box 5A Fine-tuning Nodal signaling1945.5 Mesoderm induction and patterning in the chick and mouse occurs during primitive-streak formation1965.6 The node that develops at the anterior end of the streak		192
5.5 Mesoderm induction and patterning in the chick and mouse occurs during primitive-streak formation196 5.6 The node that develops at the anterior end of the streak		193
and mouse occurs during primitive-streak formation196 5.6 The node that develops at the anterior end of the streak	Box 5A Fine-tuning Nodal signaling	194
5.6 The node that develops at the anterior end of the streak		196

in chick and mouse embryos is equivalent to the Spemann organizer in *Xenopus* 198

xvi Contents

5.7 Neural induction in chick and mouse is initiated by FGF signaling with inhibition of BMP signaling being required	200
in a later step	200
Box 5B Chromatin-remodeling complexes	202
5.8 Axial structures in chick and mouse are generated from self-renewing cell populations	203
Summary	205
Box 5C Retinoic acid: a small-molecule intercellular signal	206
Somite formation and antero-posterior patterning	207
5.9 Somites are formed in a well-defined order along the antero-posterior axis	208
Box 5D The Notch signaling pathway	212
5.10 Identity of somites along the antero-posterior axis	
is specified by Hox gene expression	213
Box 5E The Hox genes	215
5.11 Deletion or overexpression of Hox genes causes	
changes in axial patterning	218
5.12 Hox gene expression is activated in an anterior to	1
posterior pattern	219
5.13 The fate of somite cells is determined by signals from the adjacent tissues	220
from the adjacent tissues	220
Summary	222
The origin and patterning of neural crest	223
5.14 Neural crest cells arise from the borders of the neural plate and migrate to give rise to a wide range of different	
cell types	223
5.15 Neural crest cells migrate from the hindbrain to	
populate the branchial arches	224
Summary	225
Determination of left-right asymmetry	226
5.16 The bilateral symmetry of the early embryo is broken	
to produce left-right asymmetry of internal organs	226
5.17 Left-right symmetry breaking may be initiated within	
cells of the early embryo	228
Summary	229
Summary to Chapter 5	229
Chapter 6 Development of nematodes and sea urchins	235
Nematodes	236
 Box 6A Apoptotic pathways in nematodes, Drosophila 	200
and mammals	238
6.1 The cell lineage of <i>Caenorhabditis elegans</i> is largely invariant	239
	233
6.2 The antero-posterior axis in <i>Caenorhabditis elegans</i> is determined by asymmetric cell division	239
 Box 6B Gene silencing by antisense RNA and RNA interference 	

	6.3 The dorso-ventral axis in <i>Caenorhabditis elegans</i> is determined by cell-cell interactions	242
00 02	6.4 Both asymmetric divisions and cell-cell interactions specify cell fate in the early nematode embryo	244
03	6.5 Cell differentiation in the nematode is closely linked to the pattern of cell division	246
05 06	6.6 Hox genes specify positional identity along the antero-posterior axis in <i>Caenorhabditis elegans</i>	247
07	6.7 The timing of events in nematode development is under genetic control that involves microRNAs	248
08	Box 6C Gene silencing by microRNAs	250
12	6.8 Vulval development is initiated by the induction of a small number of cells by short-range signals from a single	250
13	inducing cell	250
15	Summary	253
	Echinoderms	254
18	6.9 The sea-urchin embryo develops into a free-swimming larva	254
19	6.10 The sea-urchin egg is polarized along the animal-vegetal axis	255
20	6.11 The sea-urchin fate map is finely specified, yet considerable regulation is possible	257
22 23	6.12 The vegetal region of the sea-urchin embryo acts as an organizer	258
	6.13 The sea-urchin vegetal region is demarcated by the nuclear accumulation of β -catenin	259
23	6.14 The animal-vegetal axis and the oral-aboral axis can be considered to correspond to the antero-posterior and dorso-ventral axes of other deuterostomes	260
24 25	6.15 The pluteus skeleton develops from the primary mesenchyme	261
26	6.16 The oral-aboral axis in sea urchins is related to the plane of the first cleavage	263
26	6.17 The oral ectoderm acts as an organizing region for the oral-aboral axis	264
28	Box 6D The gene regulatory network for sea-urchin	
29	endomesoderm specification	265
29	Summary	266
	Summary to Chapter 6	266
35		
36	Chapter 7 Plant development	272
38	7.1 The model plant <i>Arabidopsis thaliana</i> has a short life cycle and a small diploid genome	274
	Embryonic development	275
39	7.2 Plant embryos develop through several distinct stages	275
	Box 7A Angiosperm embryogenesis	276
39 41	7.3 Gradients of the signal molecule auxin establish the embryonic apical-basal axis	278

7.4 Plant somatic cells can give rise to embryos and seedlings	280	8.2 Gene expression is also controlled by chemical and structural modifications to DNA and histone proteins that
Box 7B Transgenic plants	281	alter chromatin structure
7.5 Cell enlargement is a major process in plant growth and morphogenesis	281	Box 8A Epigenetic control of gene expression by chromatin modification
Summary	282	8.3 Patterns of gene activity can be inherited by persistence
Meristems	283	of gene-regulatory proteins or by maintenance of chromatin modifications
7.6 A meristem contains a small, central zone of self-renewing stem cells	284	8.4 Changes in patterns of gene activity during differentiation can be triggered by extracellular signals
7.7 The size of the stem-cell area in the meristem is kept constant by a feedback loop to the organizing center	284	Summary
7.8 The fate of cells from different meristem layers can	201	Models of cell differentiation and stem cells
be changed by changing their position	285	8.5 Muscle differentiation is determined by the MyoD family of transcription factors
7.9 A fate map for the embryonic shoot meristem can be deduced using clonal analysis	287	8.6 The differentiation of muscle cells involves withdrawal from the cell cycle, but is reversible
7.10 Meristem development is dependent on signals from other parts of the plant	288	8.7 All blood cells are derived from multipotent stem cells
7.11 Gene activity patterns the proximo-distal and	200	8.8 Intrinsic and extrinsic changes control differentiation
adaxial-abaxial axes of leaves developing from the		of the hematopoietic lineages
shoot meristem	289	8.9 Developmentally regulated globin gene expression
7.12 The regular arrangement of leaves on a stem is generated by regulated auxin transport	290	is controlled by regulatory sequences far distant from the coding regions
7.13 Root tissues are produced from <i>Arabidopsis</i> root apical meristems by a highly stereotyped pattern of		8.10 The epidermis of adult mammalian skin is continually being replaced by derivatives of stem cells
cell divisions 7.14 Root hairs are specified by a combination of	292	8.11 Stem cells use different modes of division to maintain tissues
positional information and lateral inhibition	294	8.12 The lining of the gut is another epithelial tissue
Summary	294	that requires continuous renewal
Flower development and control of flowering	295	8.13 Skeletal muscle and neural cells can be renewed
7.15 Homeotic genes control organ identity in the flower	296	from stem cells in adults
Box 7C The basic model for the patterning of the Arabidopsis flower	298	8.14 Embryonic stem cells can proliferate and differentiate into many cell types in culture and contribute to normal development <i>in vivo</i>
7.16 The Antirrhinum flower is patterned dorso-ventrally as well as radially	299	Box 8B The derivation and culture of mouse embryonic
7.17 The internal meristem layer can specify floral	200	stem cells (ES cells) Summary
meristem patterning	300	The plasticity of the differentiated state
7.18 The transition of a shoot meristem to a floral meristem is under environmental and genetic control	300	8.15 Nuclei of differentiated cells can support development
7.19 Most flowering plants are hermaphrodites, but	500	8.16 Patterns of gene activity in differentiated cells can
some produce unisexual flowers	302	be changed by cell fusion
Summary	303	8.17 The differentiated state of a cell can change by
Summary to Chapter 7	304	transdifferentiation
		8.18 Stem cells could be a key to regenerative medicine
Chapter 8 Cell differentiation and stem cells	309	Box 8C Tissue engineering using stem cells
The control of gene expression	312	Box 8D Induced pluripotent stem cells (iPS cells)
8.1 Control of transcription involves both general and		8.19 Various approaches can be used to generate

Summary	355
Summary to Chapter 8	355
Chapter 9 Morphogenesis: change in form in	
the early embryo	361
Cell adhesion	363
9.1 Sorting out of dissociated cells demonstrates differences	
in cell adhesiveness in different tissues	363
Box 9A Cell-adhesion molecules and cell junctions	365
9.2 Cadherins can provide adhesive specificity	366
9.3 Transitions of tissues from an epithelial to a	
mesenchymal state, and vice versa, involve changes in	
adhesive junctions	367
Box 9B The cytoskeleton, cell-shape change and	
cell movement	368
Summary	369
Cleavage and formation of the blastula	369
9.4 The orientation of the mitotic spindle determines the	
plane of cleavage at cell division	370
9.5 The positioning of the spindle within the cell also determines whether daughter cells will be the same or	
different sizes	372
9.6 Cells become polarized in the sea-urchin blastula and	
the mouse morula	373
9.7 Fluid accumulation as a result of tight-junction formation	
and ion transport forms the blastocoel of the mammalian blastocyst	375
Summary	376
Gastrulation movements	370
	5//
9.8 Gastrulation in the sea urchin involves an epithelial-to- mesenchymal transition, cell migration, and invagination of	
the blastula wall	377
9.9 Mesoderm invagination in <i>Drosophila</i> is due to	
changes in cell shape controlled by genes that pattern the dorso-ventral axis	380
9.10 Germ-band extension in <i>Drosophila</i> involves	500
myosin-dependent remodeling of cell junctions and cell	
intercalation	382
9.11 Gastrulation in amphibians and fish involves	
involution, epiboly, and convergent extension	383
Box 9C Convergent extension	385
9.12 Xenopus notochord development illustrates the	
dependence of medio-lateral cell polarity on a pre-existing	
antero-posterior polarity	387
9.13 Gastrulation in chick and mouse embryos involves the	
delamination of cells from the epiblast and their ingression through the primitive streak	200
anough the phillippe streak	389

5	Summary	391
5	Neural tube formation	392
	9.14 Neural tube formation is driven by changes in cell	
1	shape and convergent extension	393
3	Box 9D Eph receptors and their ephrin ligands	395
	Box 9E Neural tube defects	396
3	Summary	396
5	Cell migration	397
6	9.15 Embryonic neural crest gives rise to a wide range of different cell types	397
	9.16 Neural crest migration is controlled by environmental cues	397
7	9.17 The formation of the lateral-line primordium in fishes is an example of collective cell migration	399
8	9.18 Dorsal closure in Drosophila and ventral closure in	
9	Caenorhabditis elegans are brought about by the action	400
9	of filopodia	400
	Summary Directed dilation	401
0		402
	9.19 Later extension and stiffening of the notochord occurs by directed dilation	402
2	9.20 Circumferential contraction of hypodermal cells	402
-	elongates the nematode embryo	403 403
3	Summary Summary to Chapter 9	403
	Summary to chapter 5	404
5	Chapter 10 Germ cells, fertilization, and sex	409
6	The development of germ cells	410
7	10.1 Germ-cell fate is specified in some embryos by a distinct germplasm in the egg	411
-	10.2 In mammals germ cells are induced by cell-cell	
7	interactions during development	413
	10.3 Germ cells migrate from their site of origin to the gonad	414
0	10.4 Germ cells are guided to their final destination by chemical signals	415
	10.5 Germ-cell differentiation involves a halving of	
2	chromosome number by meiosis	416
	Box 10A Polar bodies	417
3 5	10.6 Oocyte development can involve gene amplification and contributions from other cells	419
	10.7 Factors in the cytoplasm maintain the totipotency of the egg	420
7	10.8 In mammals some genes controlling embryonic	
	growth are 'imprinted'	420
	Summary	423
9	Fertilization	424

10.9 Fertilization involves cell-surface interactions between	474	11
egg and sperm	424	be [.]
10.10 Changes in the egg plasma membrane and enveloping layers at fertilization block polyspermy	426	
	420	11
10.11 Sperm-egg fusion causes a calcium wave that results in egg activation	427	sig
	429	11 of
Summary		
Determination of the sexual phenotype	430	11 of
10.12 The primary sex-determining gene in mammals is on the Y chromosome	430	
	100	11
10.13 Mammalian sexual phenotype is regulated by gonadal hormones	431	
10.14 The primary sex-determining signal in <i>Drosophila</i>	101	11 ter
is the number of X chromosomes and is cell autonomous	433	11
10.15 Somatic sexual development in Caenorhabditis		me
is determined by the number of X chromosomes	435	11
10.16 Determination of germ-cell sex depends on		pro
both genetic constitution and intercellular signals	436	Su
10.17 Various strategies are used for dosage		Ins
compensation of X-linked genes	438	11
Summary	440	fol
Summary to Chapter 10	441	11
		an
Chapter 11 Organogenesis	446	alo
The vertebrate limb	447	11
11.1 The vertebrate limb develops from a limb bud	447	ve
11.2 Genes expressed in the lateral plate mesoderm are	440	do
involved in specifying the position and type of limb	449	11 tha
11.3 The apical ectodermal ridge is required for limb outgrowth and the formation of structures along the		11
proximo-distal axis of the limb	451	isp
11.4 Outgrowth of the limb bud involves oriented cell behavior	452	11
11.5 Patterning of the limb bud involves positional information		wi
11.6 How position along the proximo-distal axis of the	131	11
limb bud is specified is still a matter of debate	454	ро
11.7 The polarizing region specifies position along the limb's		11
antero-posterior axis	456	ро
Box 11A Teratogens and the consequences of damage		Su
to the developing embryo	458	Ve
Box 11B Positional information and morphogen gradients	460	11
11.8 Sonic hedgehog is the polarizing region morphogen	461	tul
11.9 How digit identity is encoded is not yet known	462	11
Box 11C Too many fingers: mutations that affect		int
antero-posterior patterning can cause polydactyly	463	Su
11.10 The dorso-ventral axis of the limb is controlled by the		Ve
ectoderm	464	11
		en

11.11 Development of the limb is integrated by interactions between signaling centers	465
Box 11D Sonic hedgehog signaling and the primary cilium	466
11.12 Different interpretations of the same positional signals give different limbs	467
11.13 Hox genes have multiple inputs into the patterning of the limb	468
11.14 Self-organization may be involved in the development of the limb bud	471
Box 11E Reaction-diffusion mechanisms	472
11.15 Limb muscle is patterned by the connective tissue	473
11.16 The initial development of cartilage, muscles, and tendons is autonomous	473
11.17 Joint formation involves secreted signals and mechanical stimuli	474
11.18 Separation of the digits is the result of programmed cell death	475
Summary	476
Insect wings and legs	476
11.19 The adult wing emerges at metamorphosis after folding and evagination of the wing imaginal disc	477
11.20 A signaling center at the boundary between anterior and posterior compartments patterns the <i>Drosophila</i> wing along the antero-posterior axis	478
11.21 A signaling center at the boundary between dorsal and ventral compartments patterns the <i>Drosophila</i> wing along the dorso-ventral axis	481
11.22 Vestigial is a key regulator of wing development that acts to specify wing identity and control wing growth	481
11.23 How the proximo-distal axis of the <i>Drosophila</i> wing	
is patterned is not yet clear	483
11.24 The leg disc is patterned in a similar manner to the wing disc, except for the proximo-distal axis	483
11.25 Butterfly wing markings are organized by additional positional fields	485
11.26 Different imaginal discs can have the same positional values	486
Summary	488
Vertebrate and insect eyes	489
11.27 The vertebrate eye develops mainly from the neural tube and the ectoderm of the head	490
11.28 Patterning of the Drosophila eye involves cell-cell	
interactions	494
Summary	497
Vertebrate lungs and insect tracheal system	498
11.29 The vertebrate lung develops by branching of epithelial tubes	499

XX Contents

11.30 The Drosophila tracheal system is a prime example	
of branching morphogenesis	500
Summary	502
Vertebrate blood vessels and heart	502
11.31 The vascular system develops by vasculogenesis	
followed by sprouting angiogenesis	502
11.32 The development of the vertebrate heart involves morphogenesis and patterning of a mesodermal tube	504
Teeth	507
11.33 Tooth development involves epithelial-mesenchymal	507
interactions and a homeobox gene code specifies tooth identity	507
Summary	510
Summary to Chapter 11	510
Chapter 12 Development of the nervous system	520
Specification of cell identity in the nervous system	522
12.1 Initial regionalization of the vertebrate brain involves signals from local organizers	522
12.2 Local signaling centers pattern the brain along the	
antero-posterior axis	523
12.3 The cerebral cortex is patterned by signals from	
the anterior neural ridge	524
12.4 The hindbrain is segmented into rhombomeres by boundaries of cell-lineage restriction	525
12.5 Hox genes provide positional information in the	525
developing hindbrain	527
12.6 The pattern of differentiation of cells along the	
dorso-ventral axis of the spinal cord depends on ventral	
and dorsal signals	528
12.7 Neuronal subtypes in the ventral spinal cord are specified by the ventral to dorsal gradient of Shh	530
12.8 Spinal cord motor neurons at different dorso-ventral	550
positions project to different trunk and limb muscles	531
12.9 Antero-posterior pattern in the spinal cord is determined	
in response to secreted signals from the node and adjacent	
mesoderm	532
Summary	533
The formation and migration of neurons	533
12.10 Neurons in <i>Drosophila</i> arise from proneural clusters	533
12.11 The development of neurons in <i>Drosophila</i>	
involves asymmetric cell divisions and timed changes in gene expression	536
 Box 12A Specification of the sensory organs 	0.0
of adult Drosophila	537
12.12 The production of vertebrate neurons involves	
lateral inhibition, as in Drosophila	538

	12.13 Neurons are formed in the proliferative zone of the	
00	vertebrate neural tube and migrate outwards	539
02	Box 12B Timing the birth of cortical neurons	541
02	12.14 Many cortical interneurons migrate tangentially	543
0.7	Summary	543
02	Axon navigation	544
04	12.15 The growth cone controls the path taken by a growing axon	545
07	Box 12C The development of the neural circuit for the knee-jerk reflex	547
07 10	12.16 Motor neuron axons in the chick limb are guided by ephrin-Eph interactions	548
10	12.17 Axons crossing the midline are both attracted and repelled	549
20	12.18 Neurons from the retina make ordered connections with visual centers in the brain	550
22	Summary	553
22	Synapse formation and refinement	554
22	12.19 Synapse formation involves reciprocal interactions	556
23	 Box 12D Autism: a developmental disorder that involves 	550
	synapse dysfunction	558
24	12.20 Many motor neurons die during normal development	559
	12.21 Neuronal cell death and survival involve both	
25	intrinsic and extrinsic factors	559
	12.22 The map from eye to brain is refined by neural activity	560
27	Summary	561
	Summary to Chapter 12	562
28	Chapter 13 Growth, post-embryonic development	
	and regeneration	569
30	Growth	570
31	13.1 Tissues can grow by cell proliferation, cell enlargement, or accretion	571
	13.2 Cell proliferation is controlled by regulating entry into the cell cycle	572
32	13.3 Cell division in early development can be controlled by	
33	an intrinsic developmental program	573
33	13.4 Extrinsic signals coordinate cell division, cell growth, and cell death in the developing <i>Drosophila</i> wing	574
33		5/4
	Box 13A The core Hippo signaling pathways in <i>Drosophila</i> and mammals	575
36	13.5 Cancer can result from mutations in genes that control cell proliferation	576
37	13.6 Size-control mechanisms differ in different organs	578
88	13.7 Overall body size depends on the extent and the duration of growth	580

13.8 Hormones and growth factors coordinate the growth of different tissues and organs and contribute to determining	504
overall body size	581
Box 13B The major determinant of body size in dogs is the growth hormone-IGF-1 axis	582
13.9 Elongation of the long bones illustrates how growth	
can be determined by a combination of an intrinsic growth program and extracellular factors	583
Box 13C Digit length ratio is determined in the embryo	586
13.10 The amount of nourishment an embryo receives can have profound effects in later life	587
Summary	588
Molting and metamorphosis	588
13.11 Arthropods have to molt in order to grow	589
13.12 Insect body size is determined by the rate and	505
duration of larval growth	589
13.13 Metamorphosis in amphibians is under hormonal control	592
Summary	593
Regeneration	594
13.14 There are two types of regeneration—morphallaxis	
and epimorphosis	595
13.15 Regeneration of amphibian and insect limbs involves	
epimorphosis	595
Box 13D Regeneration in <i>Hydra</i>	596
13.16 Amphibian limb regeneration involves cell dedifferentiation and new growth	597
Box 13E Planarian regeneration	598
13.17 Limb regeneration in amphibians is dependent on the	
presence of nerves	602
13.18 The limb blastema gives rise to structures with	
positional values distal to the site of amputation	603
13.19 Retinoic acid can change proximo-distal positional	
values in regenerating limbs	605
13.20 Mammals can regenerate the tips of the digits	607
13.21 Insect limbs intercalate positional values by both	
proximo-distal and circumferential growth	607
13.22 Heart regeneration in zebrafish involves the	
resumption of cell division by cardiomyocytes	609
Box 13F Why can't we regenerate our limbs?	611
Summary	612
Aging and senescence	613
13.23 Genes can alter the timing of senescence	613
13.24 Cell senescence blocks cell multiplication	615
Summary	616
Summary to Chapter 13	616

Chapter 14 Evolution and development	623
Box 14A Darwin's finches	625
The evolution of development	626
14.1 Genomic evidence is throwing light on the origin	
of metazoans	626
14.2 Multicellular organisms evolved from single-celled ancestors	628
Summary	629
The evolutionary modification of embryonic	010
development	629
14.3 Hox gene complexes have evolved through	
gene duplication	630
14.4 Changes in both Hox genes and their target genes	
generated the elaboration and diversification of bilaterian body plans	632
14.5 Differences in Hox gene expression determine the	002
variation in position and type of paired appendages in	
arthropods	634
14.6 The basic body plan of arthropods and vertebrates	
is similar, but the dorso-ventral axis is inverted	638
14.7 Limbs evolved from fins	639
14.8 Limbs have evolved to fulfill different specialized functions	641
Box 14B How the bird wing evolved	642
Box 14C Pelvic reduction in sticklebacks is based on	
mutations in a gene control region	644
14.9 Adaptive evolution within the same species	
provides a way of studying the developmental basis for	645
evolutionary change 14.10 Evolution of different types of eyes in different	045
animal groups is an example of parallel evolution using	
an ancient genetic circuitry	646
14.11 Embryonic structures have acquired new	
functions during evolution	647
Summary	649
Changes in the timing of developmental processes	649
14.12 Changes in growth can modify the basic body plan14.13 Evolution can be due to changes in the timing of	649
developmental events	651
14.14 The evolution of life histories has implications for	
development	653
Summary	653
Summary to Chapter 14	654
Glossary	659
Index	681