Contents

Guest Box authors, ix

Preface to the second edition, xi

Preface to the first edition, xiii

List of symbols, xv

PART I: INTRODUCTION, 1

1 Introduction, 3

- 1.1 Genetics and civilization, 4
- 1.2 What should we conserve?, 5
- 1.3 How should we conserve biodiversity?, 9
- 1.4 Applications of genetics to conservation, 10

1.5 The future, 12

Guest Box 1: L. Scott Mills and Michael E. Soulé. The role of genetics in conservation, 13

2 Phenotypic variation in natural populations, 14

- 2.1 Color pattern, 17
- 2.2 Morphology, 20
- 2.3 Behavior, 23
- 2.4 Phenology, 25
- 2.5 Differences among populations, 27
- 2.6 Nongenetic inheritance, 31
- Guest Box 2: Chris J. Foote, Looks can be deceiving: countergradient variation in secondary sexual color in sympatric morphs of sockeye salmon, 32

3 Genetic variation in natural populations: chromosomes and proteins, 34

- 3.1 Chromosomes, 35
- 3.2 Protein electrophoresis, 45

- 3.3 Genetic variation within natural populations, 48
- 3.4 Genetic divergence among populations, 50
- Guest Box 3: E. M. Tuttle, Chromosomal polymorphism in the white-throated sparrow, 52

4 Genetic variation in natural populations: DNA, 54

- 4.1 Mitochondrial and chloroplast organelle DNA, 56
- 4.2 Single-copy nuclear loci, 60
- 4.3 Multiple locus techniques, 68
- 4.4 Genomic tools and markers, 69
- 4.5 Transcriptomics, 72
- 4.6 Other 'omics' and the future, 73
- Guest Box 4: Louis Bernatchez, Rapid evolutionary changes of gene expression in domesticated Atlantic salmon and its consequences for the conservation of wild populations, 74

PART II: MECHANISMS OF EVOLUTIONARY CHANGE, 77

5 Random mating populations: Hardy-Weinberg principle, 79

- 5.1 Hardy-Weinberg principle, 80
- 5.2 Hardy-Weinberg proportions, 82
- 5.3 Testing for Hardy-Weinberg proportions, 83
- 5.4 Estimation of allele frequencies, 88
- 5.5 Sex-linked loci, 90
- 5.6 Estimation of genetic variation, 92
- Guest Box 5: Paul Sunnucks and Birgita D. Hansen, Null alleles and Bonferroni 'abuse': treasure your exceptions (and so get it right for Leadbeater's possum), 93

vi Contents

6 Small populations and genetic drift, 96

- 6.1 Genetic drift, 97
- 6.2 Changes in allele frequency, 100
- 6.3 Loss of genetic variation: the inbreeding effect of small populations, 101
- 6.4 Loss of allelic diversity, 102
- 6.5 Founder effect, 106
- 6.6 Genotypic proportions in small populations, 110
- 6.7 Fitness effects of genetic drift, 112
- Guest Box 6: Menna E. Jones, Reduced genetic variation and the emergence of an extinction-threatening disease in the Tasmanian devil, 115

7 Effective population size, 117

- 7.1 Concept of effective population size, 118
- 7.2 Unequal sex ratio, 119
- 7.3 Nonrandom number of progeny, 121
- 7.4 Fluctuating population size, 125
- 7.5 Overlapping generations, 125
- 7.6 Variance effective population size, 126
- 7.7 Cytoplasmic genes, 126
- 7.8 Gene genealogies, the coalescent, and lineage sorting, 129
- 7.9 Limitations of effective population size, 130
- 7.10 Effective population size in natural populations, 132
- Guest Box 7: Craig R. Miller and Lisette P. Waits, Estimation of effective population size in Yellowstone grizzly bears, 134

8 Natural selection, 136

- 8.1 Fitness, 138
- 8.2 Single locus with two alleles, 138
- 8.3 Multiple alleles, 144
- 8.4 Frequency-dependent selection, 147
- 8.5 Natural selection in small populations, 149
- 8.6 Natural selection and conservation, 151
- Guest Box 8: Paul A. Hohenlohe and William A. Cresko, Natural selection across the genome of the threespine stickleback fish, 154

9 Population subdivision, 156

- 9.1 F-Statistics, 158
- 9.2 Spatial patterns of relatedness within local populations, 161
- 9.3 Genetic divergence among populations and gene flow, 163
- 9.4 Gene flow and genetic drift, 165

- 9.5 Continuously distributed populations, 168
- 9.6 Cytoplasmic genes and sex-linked markers, 169
- 9.7 Gene flow and natural selection, 172
- 9.8 Limitations of F_{ST} and other measures of subdivision, 174
- 9.9 Estimation of gene flow, 179
- 9.10 Population subdivision and conservation, 184
- Guest Box 9: M.K. Schwartz and J.M. Tucker, Genetic population structure and conservation of fisher in western North America, 185

10 Multiple loci, 187

- 10.1 Gametic disequilibrium, 188
- 10.2 Small population size, 192
- 10.3 Natural selection, 192
- 10.4 Population subdivision, 196
- 10.5 Hybridization, 196
- 10.6 Estimation of gametic disequilibrium, 199
- 10.7 Multiple loci and conservation, 200
- Guest Box 10: Robin S. Waples, Estimation of effective population size using gametic disequilibrium, 203

11 Quantitative genetics, 205

- 11.1 Heritability, 206
- 11.2 Selection on quantitative traits, 212
- 11.3 Finding genes underlying quantitative traits, 217
- 11.4 Loss of quantitative genetic variation, 220
- 11.5 Divergence among populations, 223
- 11.6 Quantitative genetics and conservation, 225
- Guest Box 11: David W. Coltman, Response to trophy hunting in bighorn sheep, 229

12 Mutation, 230

- 12.1 Process of mutation, 231
- 12.2 Selectively neutral mutations, 235
- 12.3 Harmful mutations, 239
- 12.4 Advantageous mutations, 239
- 12.5 Recovery from a bottleneck, 241
- Guest Box 12: Michael W. Nachman, Color evolution via different mutations in pocket mice, 242

PART III: GENETICS AND CONSERVATION, 245

13 Inbreeding depression, 247

- 13.1 Pedigree analysis, 248
- 13.2 Gene drop analysis, 252

- 13.3 Estimation of *F* with molecular markers, 253
- 13.4 Causes of inbreeding depression, 256
- 13,5 Measurement of inbreeding depression, 258
- 13.6 Genetic load and purging, 264
- 13.7 Inbreeding and conservation, 267
- Guest Box 13: Lukas F. Keller, Inbreeding depression in song sparrows, 268

14 Demography and extinction, 270

- 14.1 Estimation of census population Size, 272
- 14.2 Inbreeding depression and extinction, 274
- 14.3 Population viability analysis, 277
- 14.4 Loss of phenotypic variation, 286
- 14.5 Loss of evolutionary potential, 288
- 14.6 Mitochondrial DNA, 289
- 14.7 Mutational meltdown, 289
- 14.8 Long-term persistence, 291
- 14.9 The 50/500 rule, 292
- Guest Box 14: A. G. Young, M. Pickup,
 - and B. G. Murray, Management implications of loss of genetic diversity at the selfincompatibility locus for the button wrinklewort, 293

15 Metapopulations and fragmentation, 296

- 15.1 The metapopulation concept, 297
- 15.2 Genetic variation in metapopulations, 298
- 15.3 Effective population size of metapopulations, 301
- 15.4 Population divergence and connectivity, 303
- 15.5 Genetic rescue, 304
- 15.6 Landscape genetics, 306
- 15.7 Long-term population viability, 311
- Guest Box 15: Robert C. Vrijenhoek, Fitness loss and genetic rescue in stream-dwelling topminnows, 313

16 Units of conservation, 316

- 16.1 What should we protect?, 318
- 16.2 Systematics and taxonomy, 320
- 16.3 Phylogeny reconstruction, 322
- 16.4 Genetic relationships within species, 327
- 16.5 Units of conservation, 336
- 16.6 Integrating genetic, phenotypic, and environmental information, 346
- 16.7 Communities, 348
- Guest Box 16: David J. Coates, Identifying units of conservation in a rich and fragmented flora, 350

17 Hybridization, 352

- 17.1 Natural hybridization, 353
- 17.2 Anthropogenic hybridization, 358
- 17.3 Fitness consequences of hybridization, 360
- 17.4 Detecting and describing hybridization, 364
- 17.5 Hybridization and conservation, 370
- Guest Box 17: Loren H. Rieseberg, Hybridization and the conservation of plants, 375

18 Exploited populations, 377

- 18.1 Loss of genetic variation, 378
- 18.2 Unnatural selection, 381
- 18.3 Spatial structure, 385
- 18.4 Effects of releases, 388
- 18.5 Management and recovery of exploited populations, 391
- Guest Box 18: Guðrún Marteinsdóttir, Long-term genetic changes in the Icelandic stock of Atlantic cod in response to harvesting, 393

19 Conservation breeding and restoration, 395

- 19.1 The role of conservation breeding, 398
- 19.2 Reproductive technologies and genome banking, 400
- 19.3 Founding populations for conservation breeding programs, 403
- 19.4 Genetic drift in captive populations, 405
- 19.5 Natural selection and adaptation to captivity, 407
- 19.6 Genetic management of conservation breeding programs, 410
- 19.7 Supportive breeding, 412
- 19.8 Reintroductions and translocations, 414
- Guest Box 19: Robert C. Lacy, Understanding inbreeding depression: 25 years of experiments with *Peromyscus* mice, 419

20 Invasive species, 421

- 20.1 Why are invasive species so successful?, 422
- 20.2 Genetic analysis of introduced species, 425
- 20.3 Establishment and spread of invasive species, 429
- 20.4 Hybridization as a stimulus for invasiveness, 430
- 20.5 Eradication, management, and control, 431
- 20.6 Emerging diseases and parasites, 433
- Guest Box 20: Richard Shine, Rapid evolution of introduced cane toads and native snakes, 438

21 Climate change, 440

- 21.1 Predictions and uncertainty about future climates, 441
- 21.2 Phenotypic plasticity, 442
- 21.3 Maternal effects and epigenetics, 445
- 21.4 Adaptation, 446
- 21.5 Species range shifts, 448
- 21.6 Extirpation and extinction, 449
- 21.7 Management in the face of climate change, 451
- Guest Box 21: S. J. Franks, Rapid evolution of flowering time by an annual plant in response to climate fluctuation, 453

22 Genetic identification and monitoring, 455

- 22.1 Species identification, 457
- 22.2 Metagenomics and species composition, 464
- 22.3 Individual identification, 465
- 22.4 Parentage and relatedness, 469
- 22.5 Population assignment and composition analysis, 471
- 22.6 Genetic monitoring, 477
- Guest Box 22: C. Scott Baker, Genetic detection of illegal trade of whale meat results in closure of restaurants, 481

Appendix: Probability and statistics, 484

- A1 Paradigms, 485
- A2 Probability, 487
- A3 Statistical measures and distributions, 489
- A4 Frequentist hypothesis testing, statistical errors, and power, 496
- A5 Maximum likelihood, 499
- A6 Bayesian approaches and MCMC (Markov Chain Monte Carlo), 500
- A7 Approximate Bayesian Computation (ABC), 504
- A8 Parameter estimation, accuracy, and precision, 504
- A9 Performance testing, 506
- A10 The coalescent and genealogical Information, 506
- Guest Box A: James F. Crow, Is mathematics necessary?, 511

Glossary, 513

References, 531

Index, 587

Color plates section between page 302 and page 303

Companion website

This book has a companion website at:

www.wiley.com/go/allendorf/populations

with additional resources