CONTENTS

INTRODUCTION

SEC	TION	PAGE
1.	The variational approach to mechanics	xxi
2.	The procedure of Euler and Lagrange	xxii
3.	Hamilton's procedure	xxiii
4.	The calculus of variations	xxiv
5.	Comparison between the vectorial and the variational	3. E
	treatments of mechanics	xxiv
6.	Mathematical evaluation of the variational principles	XXV
7.	Philosophical evaluation of the variational approach	
	to mechanics	xxvi

I. THE BASIC CONCEPTS OF ANALYTICAL MECHANICS

1.	The principal viewpoints of analytical mechanics	3
2.	Generalized coordinates	6
3.	The configuration space	12
4.	Mapping of the space on itself	14
5.	Kinetic energy and Riemannian geometry	17
6.	Holonomic and non-holonomic mechanical systems	24
7.	Work function and generalized force	27
8.	Scleronomic and rheonomic systems. The law of the	0.80
	conservation of energy	31
	V. THE LAGRANGIAN EQUATIONS OF MOTION	
	II. THE CALCULUS OF VARIATIONS	

1.	The general nature of extremum problems	35
2	The stationers salue of a function	30
4.	The stationary value of a function	38
3.	The second variation	40
4.	Stationary value versus extremum value	42
5.	Auxiliary conditions. The Lagrangian λ -method	43
6.	Non-holonomic auxiliary conditions	48
7.	The stationary value of a definite integral	49
8.	The fundamental processes of the calculus of variations	54
9.	The commutative properties of the & process	56

0	-		-	_		_	-
	n	ЪT	т	T.	λT	т	0
~	U	1.4		E.	14		3

	Contracto	
SEC	TION	PAGE
10.	The stationary value of a definite integral treated	area and
11	by the calculus of variations The Fuler I according differential equations for a degree	57
	of freedom	60
12.	Variation with auxiliary conditions	62
13.	Non-holonomic conditions	65
14.	Isoperimetric conditions	66
15.	The calculus of variations and boundary conditions.	10
	The problem of the elastic bar	68
	III. THE PRINCIPLE OF VIRTUAL WORK	
1.	The principle of virtual work for reversible displacements	74
2.	The equilibrium of a rigid body	78
3.	Equivalence of two systems of forces	79
4.	Equilibrium problems with auxiliary conditions	80
5.	Fourier's inequality	83
0.	i ounce o modulately	00
	IV. D'ALEMBERT'S PRINCIPLE	1
1.	The force of inertia	88
2.	The place of d'Alembert's principle in mechanics	92
3.	The conservation of energy as a consequence of	-
	d'Alembert's principle	94
4.	Finstein's equivalence hypothesis	06
5.	Apparent forces in a rotating reference system	100
6.	Dynamics of a rigid body. The motion of the centre of mass	103
7.	Dynamics of a rigid body. Euler's equations	104
8.	Gauss' principle of least restraint	106
P.	conservation of energy	
	V. THE LAGRANGIAN EQUATIONS OF MOTION	
1.	Hamilton's principle	111

	a restantion o principic	***
2.	The Lagrangian equations of motion and their invariance	
	relative to point transformations	115
3.	The energy theorem as a consequence of Hamilton's	
	principle	119
4.	Kinosthenic or ignorable variables and their elimination	125
5.	The forceless mechanics of Hertz	130
6.	The time as kinosthenic variable; Jacobi's principle;	
	the principle of least action	132
	a franch manufal manufactor of the relation of warrant terms	

xvi

SEC	TION	PAGE
7.	Jacobi's principle and Riemannian geometry Auxiliary conditions; the physical significance of the	138
101	Lagrangian λ -factor	141
9.	Non-holonomic auxiliary conditions and polygenic forces	146
10.	Small vibrations about a state of equilibrium	147
	VI. THE CANONICAL EQUATIONS OF MOTION	
1. 2.	Legendre's dual transformation Legendre's transformation applied to the	161
	Lagrangian function	164
3.	Transformation of the Lagrangian equations of motion	166
4.	The canonical integral	168
5.	The phase space and the space fluid	172
6.	The energy theorem as a consequence of the	
	canonical equations	175
7.	Liouville's theorem	177
8	Integral invariants, Helmholtz' circulation theorem	180
9.	The elimination of ignorable variables	183

CONTENTS

vvii

VII. CANONICAL TRANSFORMATIONS

The Hamiltonian formulation of particle dy

10. The parametric form of the canonical equations 185

1. Coordinate transformations as a method of solving	
mechanical problems	193
2. The Lagrangian point transformations	195
3. Mathieu's and Lie's transformations	201
4. The general canonical transformation	204
5. The bilinear differential form	207
6. The bracket expressions of Lagrange and Poisson	212
7. Infinitesimal canonical transformations	216
8. The motion of the phase fluid as a continuous succession	
of canonical transformations	219
9. Hamilton's principal function and the motion of the	
phase fluid	222
variation of volume intervals	

VIII. THE PARTIAL DIFFERENTIAL EQUATION OF HAMILTON-JACOBI

1. The importance of the generating function for the	
problem of motion	229
2. Jacobi's transformation theory	231
3. Solution of the partial differential equation by separation	239

~			26.3	
C	ON	TF	'N'	rs
~	OIN	TT	1.	10

SE	CTION	PAGE
4	. Delaunay's treatment of separable periodic systems	243
5	. The role of the partial differential equation in the theories	KUA R
	of Hamilton and Jacobi	254
6	. Construction of Hamilton's principal function with the	
	help of Jacobi's complete solution	262
7	. Geometrical solution of the partial differential equation.	63
	Hamilton's optico-mechanical analogy	264
8	. The significance of Hamilton's partial differential equation	
	in the theory of wave motion	276
9	. The geometrization of dynamics. Non-Riemannian	Sar T
	geometrics. The metrical significance of Hamilton's	
	partial differential equation	280
	canonical integrable areas of show lauraly in electric and 1	
	IX. RELATIVISTIC MECHANICS	
	energy theorem as a consequence of the one he seeds with	
1.	Historical introduction	291
2.	Relativistic kinematics	294
3.	Minkowski's four-dimensional world	300
4.	The Lorentz transformations	303
5.	Mechanics of a particle	314
6.	The Hamiltonian formulation of particle dynamics	319
7.	The potential energy V	320
8.	Relativistic formulation of Newton's scalar theory of	
~	gravitation	322
9.	Motion of a charged particle	324
10.	Geodesics of a four-dimensional world	329
11.	The planetary orbits in Einstein's gravitational theory	330
12.	The gravitational bending of light rays	336
13.	The gravitational red-shift of the spectral lines	338
	Bibliography	340
	V UICTODICAL CUDUDI	Bal
	A. HISTORICAL SURVEY	341
	VI MECHANICS OF THE CONTINUES	
	XI. MECHANICS OF THE CONTINUA	
1.	The variation of volume integrals	959
2.	Vector-analytic tools	254
3.	Integral theorems	004
4.	The conservation of mass	007
5.	Hydrodynamics of ideal fluids	308
6	The hydrodynamic equations in Lograngian formulation	309
7.	Hydrostatics	300
8	The circulation theorem	362
9	Euler's form of the hydrodynamic equations	304
	- and o the hydrodynamic equations	305

xviii

CONTENTS	xix
SECTION	PAGE
10. The conservation of energy	368
11. Elasticity. Mathematical tools	369
12. The strain tensor	372
13. The stress tensor	374
14. Small elastic vibrations	375
15. The Hamiltonization of variational problems	376
16. Young's modulus. Poisson's ratio	378
17. Elastic stability	379
18. Electromagnetism. Mathematical tools	380
19. The Maxwell equations	381
20. Noether's principle	384
21. Transformation of the coordinates	386
22. The symmetric energy-momentum tensor	389
23. The ten conservation laws	393
24. The dynamical law in field theoretical derivation	394
APPENDIX I	397
APPENDIX II	401
BIBLIOGRAPHY	407
INDEX	409
THE REAL PROPERTY AND THE PARTY AND ALL AND A DECK A SHOT AND	

then prote the section of property and of chap. I, section 1.