Contents

	APTER 1 INTRODUCTION TO STUDY OF EPIGENETICS		3.2	Chains of nucleosomes organize into chromatin fibers	21
1.1	THE CORE ISSUE: CONTROLLING THE EXPRESSION OF SPECIFIC GENES	1		Chromatin fibers are further organized into euchromatin and heterochromatin	23
1.2	DEFINING EPIGENETICS	1		A variety of mechanisms are involved in compacting chromatin beyond the 30 nm	24
1.3	THE NATURE OF EPIGENETIC MARKS	2		fiber stage Chromatin compaction restricts access	24
1.4	THE IMPORTANCE OF EPIGENETICS	2		to the information content of DNA	26
FURTHER READING		4	KEY	CONCEPTS	26
			FUR [*]	THER READING	27
	APTER 2 THE BASIS OF THE ANSCRIPTION PROCESS		СП	APTER 4 MODIFYING THE	
2.1	THE NEED FOR SPECIFICITY	7		CUCTURE OF CHROMATIN	
2.2	PROMOTERS AND THEIR TATA		4.1	CHROMATIN REMODELING	29
2.3	ASSEMBLY OF THE PRE-INITIATION	8		Chromatin remodeling transiently exposes DNA to binding proteins	29
2.3	COMPLEX	10		Chromatin remodeling is mediated by the SWI/SNF family of proteins in	
2.4	INITIATION OF TRANSCRIPTION	11		eukaryotes Chromatin remodeling by SWI/SNF works	30
KEY CONCEPTS		12		by repositioning nucleosomes	31
FUR	THER READING	12		Transcription factor binding sites are often located in regions of low nucleosome occupancy	32
CH	APTER 3 DNA PACKAGING		4.2	CHROMATIN MODIFICATION	33
AND CHROMATIN ARCHITECTURE				Spontaneous conformational changes and covalent modifications can also expose	
3.1	NUCLEOSOME STRUCTURE AND	-		DNA to transcription factors	33
	CHROMATIN Chromatin consists of DNA plus many	15		Epigenetic modification of DNA or histones regulates nucleosome occupancy	
	proteins	15		and repositioning	35
	The nucleosome is the basic unit of chromatin	16	KEY	CONCEPTS	37
	DNA binds to the histone octamer	17	FUR'	THER READING	37

CH	APTER 5 DNA METHYLATION			Lysine is often acetylated in histone tails	61
5.1	PATTERNS OF DNA METHYLATION	39		Proteins with bromodomains recognize	(0
	CpG-rich islands are infrequently			and bind to acetylated histones The multiple methylation states of lysine	62
	methylated	40		can alter transcriptional response	63
	CpG-poor islands are frequently methylated	40	6.2	PHOSPHORYLATION OF SERINE AND THREONINE	65
5.2	EFFECTS OF DNA METHYLATION ON TRANSCRIPTION	42	6.3	ADDITION OF UBIQUITIN TO SPECIFIC	
	Proteins controlling cellular function interact with methylated DNA	42	6.4	LYSINES SUMOYLATION OF LYSINES	66
	Transcription factors and				
	methylated-DNA-binding proteins can repress transcription	44	6.5	BIOTINYLATION OF HISTONES	69
5.3	THE MOLECULES THAT METHYLATE		6.6	ADP-RIBOSYLATION OF HISTONES	71
3.3	DNA THE MOLECULES THAT METHYLATE	45	6.7	THE HISTONE CODE HYPOTHESIS	71
	De novo methylation of cytosine establishes the methylation pattern	45	KEY	CONCEPTS	73
	Existing patterns of DNA methylation are maintained	47	FUR'	THER READING	73
5.4	DNA METHYLTRANSFERASE ACTIVITY	48			
0.4	Enzyme activity can be controlled by	40	CH	APTER 7 HISTONE	
	small molecules in vivo	48	MO	DIFICATION MACHINERY	
	DNA methyltransferase activity can be controlled transcriptionally	49	7.1	ENZYMES THAT ACETYLATE OR DEACETYLATE HISTONES	77
5.5	METHYLATION REGULATION AT SPECIFIC GENE LOCI	51		Acetyl groups are added by a class of enzymes known as histone acetyltransferases	77
	Histone interaction with DNA			Histone acetyltransferases add acetyl	//
	methyltransferases affects where DNA is methylated	51		groups to specific lysine residues	77
	Transcription factors may control DNA methyltransferases	52		Histone deacetylase enzymes remove acetyl groups from histone lysine residues	80
	Noncoding RNA may control DNA methyltransferases	53	7.2	ENZYMES THAT METHYLATE OR DEMETHYLATE HISTONES	80
	Noncoding RNA can influence chromatin regulation directly	55		The histone methyltransferases add methyl groups to histone residues	80
E 4				The SET domain	83
5.6	GENOME FUNCTION CONTROL ACROSS SPECIES	56		SET 7/9	83
				EZH2	85
KEY	CONCEPTS	57		Human SET domain proteins	85
FURTHER READING		57		MLL-family proteins Non-SET-dependent methyltransferases	86 87
				The histone arginyl methyltransferases	87
CH	APTER 6 POST-TRANSLATIONA	AT.		Histone methylation is reversible using	
	APTER 6 POST-TRANSLATIONA DIFICATION OF HISTONES	\L		histone demethylases	90
				Lysine-specific demethylase 1	90
6.1	ACETYLATION AND METHYLATION OF LYSINE	60		Demethylating trimethylated lysine 4 on H3 Demethylating methylated arginine	93 93
	SI EI SIITE			beinetrylating metrylated digitille	10

The HOX clusters are also subject to epigenetic control of gene expression RAREs occur in open-chromatin regions	142 144	Genes of progenitor germ cells undergo two rounds of demethylation 11.4 THE NEED FOR IMPRINTING	165 168
HOX gene expression levels	146		
KEY CONCEPTS	147	KEY CONCEPTS	169
FURTHER READING	147	FURTHER READING	169
CHAPTER 10 EPIGENETIC CONTROL OF THE MITOTIC CELL CYCLE		CHAPTER 12 EPIGENETIC CONTROL OF CELLULAR DIFFERENTIATION	
10.1 S PHASE INVOLVES DNA REPLICATION	149	12.1 FROM CELLULAR TOTIPOTENCY TO PLURIPOTENCY	171
10.2 THE CELL DIVIDES IN M PHASE	153	12.2 MAINTENANCE OF PLURIPOTENCY	
KEY CONCEPTS	154	IN EMBRYONIC STEM CELLS	173
FURTHER READING	155	12.3 DIFFERENTIATION OF EMBRYONIC STEM CELLS	174
CHAPTER 11 THE EPIGENETIC BASIS OF GENE IMPRINTING		12.4 BIVALENT CHROMATIN DOMAINS IN NEURAL STEM CELLS	176
11.1 CONTROLLING MONOALLELIC EXPRESSION OF IMPRINTED GENES	157	12.5 CHROMATIN PROFILE OF HEMATOPOIETIC PROGENITORS	177
Imprinted genes share few characteristics in common	157	KEY CONCEPTS	178
Imprinting control regions (ICRs) regulate the imprinted expression of genes	158	FURTHER READING	179
Differentially methylated regions contain imprinting signals	159	CHAPTER 13 REVERSIBILITY	
Chromatin modifications at DMR sites affect gene imprinting	159	OF EPIGENETIC MODIFICATION PATTERNS	
11.2 EXAMPLES OF IMPRINTING	160	13.1 REPROGRAMMING THE EPIGENOME	
The imprinting of <i>IGF2/H19</i> is well documented	160	BY SOMATIC CELL NUCLEAR TRANSFER	182
Binding of CTCF at the IGF2/H19 imprint control region to an insulator mechanism		What happens to the somatic genome during SCNT?	183
to control imprinted gene expression The mechanism by which insulation occurs	161	Epigenetic modification is the basis of SCNT reprogramming	185
is uncertain There are other examples of imprinting on	162	Epigenetic reprogramming is a normal feature of fertilization that is hijacked by SCNT	186
the same stretch of DNA	163	There are several possible mechanisms by which the somatic genome might be	
11.3 ESTABLISHING DIFFERENTIALLY METHYLATED REGIONS	164	remodeled in SCNT	187
Most genes undergo demethylation after fertilization	164	The epigenetic remodeling that occurs in SCNT differs from the remodeling that occurs after fertilization	189
Imprinted genes retain their DNA methylation patterns at their DMRs during fertilization	165	Some aspects of reprogramming of the somatic epigenome are outside the oocyte's capacity	190

Xi

	Somatic gene expression must be turned off for epigenetic reprogramming to occur in SCNT embryos	191		Assisted reproductive technologies may increase the incidence of imprinting diseases	218
13.2	REPROGRAMMING THE EPIGENOME BY CELL FUSION	102	14.3	EPIGENETICS OF MAJOR DISEASE GROUPS	219
	Fusion of somatic cells with pluripotent	192		Cardiovascular disease is the major killer in high-income countries	219
	cells can reprogram the somatic genome OCT4 is involved in genome reprogramming	192		The basic problem in cardiovascular disease is atherosclerosis	220
	in heterokaryons There are several possible mechanisms by which the OCT4/SOX2/NANOG trinity of pluripotency factors may work to	194		Epigenetic events may promote atherosclerosis by increasing known risk factors	221
	reprogram genomes	195		Epigenetics has a role in the regulation of arterial hypertension	224
	Reprogramming may not be the sole purview of ESCs	196		Hypertension increases with age	224
13.3				Cardiac hypertrophy and heart failure also have an epigenetic component	227
	BY CELL EXTRACTS Cell extracts can effect epigenetic	197		Epigenetic drift may contribute to cardiovascular disease	228
	reprogramming by providing the needed regulatory factors	197	14.4	EPIGENETICS OF KIDNEY DISEASE	229
	Cell extract reprogramming has the potential to be clinically useful	198	14.5	EPIGENETICS OF DIABETES	231
13 4	REPROGRAMMING THE EPIGENOME		KEY (CONCEPTS	233
10.4	BY INDUCED PLURIPOTENCY	199	FURT	HER READING	234
	Epigenetic reprogramming occurs during iPSC derivation	201		to ned otro-	
	Making iPSCs safe for clinical application	203		APTER 15 EPIGENETICS OF MORY, NEURODEGENERATION	
KEY	CONCEPTS	204		MENTAL HEALTH	1
FURT	HER READING	205	15.1	MEMORY	235
				Memory formation relies on specific regions of the brain	235
CHAPTER 14 EPIGENETIC PREDISPOSITION TO DISEASE AND		D		Structural changes and plasticity of synapses could be the basis of long-term memory	237
14.1	PRINTING-BASED DISORDERS PREDISPOSITION TO DISEASE	208		Epigenetic control of synaptic plasticity may contribute to memory maintenance	237
	Life-course epidemiology seeks to explain disease	208	15.2	EPIGENETIC INVOLVEMENT IN NEURODEGENERATION	240
	Epigenetics may be the basis of stochastic variation in disease	210		Epigenetic alterations may contribute to the development of Alzheimer's disease	240
14.2	IMPRINTING-BASED DISORDERS	210		There is some evidence that epigenetic	
	Imprinting disorders can persist beyond embryogenesis	211		mechanisms may contribute to Parkinson's disease	243
	Prader–Willi and Angelman syndromes result from disruptions on chromosome 15	212		THE IMPACT OF EPIGENETIC CONTROL OF GENE EXPRESSION ON MENTAL	
	Beckwith-Wiedemann and Silver-Russell			HEALTH	244
	syndromes are consequences of disruptions of the <i>IGF-H19</i> locus	216		Disruption of epigenetic regulation may explain some features of bipolar disorder	245

	Epigenetic regulation is a factor in major depressive disorder	247		The mechanisms controlling DNA methylation are imperfect	264
15.4	SUMMARY	251		Abnormal DNA hypomethylation contributes to cancer formation and progression	267
KEY CONCEPTS		251		Oxidative stress has additional effects on epigenetic processes that impinge	
FURTHER READING		252		on cancer	270
				The influence of microRNA on DNA methylation in cancer	271
CHAPTER 16 EPIGENETICS OF CANCER			16.4	HISTONE MODIFICATION PATTERNS AND CANCER	273
16.1	UNCONTROLLED CELL REPLICATION Loss of control of tissue homeostasis is a	254		How does histone acetylation contribute to tumorigenesis?	273
	root cause of cancer	254		The HAT/HDAC balance requires	
	Tissue homeostasis requires cell death	256		dysregulation of other factors	274
	Loss of control of cell division is also known as cell transformation	256		Histone methylation contributes to tumorigenesis	275
	Dysfunctional genes are the basis of transformation	257	16.5	EXAMPLES OF EPIGENETIC DYSREGULATION LEADING TO	
16.2	CHANGES LEADING TO NEOPLASTIC TRANSFORMATION	258		CANCER Hematological malignancies such as	276
	ncogenes and tumor suppressor genes re often altered during cancer		leukemia are good examples of epigenetic dysregulation	276	
	progression	258		DNA hypermethylation and hypomethylation contribute to the leukemic phenotype	278
	Genomic instability is a common trait of cancer cells	260		How epigenetics contributes to lung cancers	281
	Cancer cells frequently show major disruption in their DNA methylation profiles	261	KEY	CONCEPTS	284
	Impairment of DNA-repair mechanisms enhances cancer progression	262	FURT	THER READING	285
16.3	ABNORMAL PATTERNS OF DNA METHYLATION IN CANCER	0/0		TOTAL	
	DNA hypermethylation is typically	263	GLOSSARY		287
	mediated by DNMT1	263	IND	EX	291