CONTENTS

Preface to the Fourth Edition

1 Biomechanics as an Interdiscipline

1.0 Introduction, 1

- 1.1 Measurement, Description, Analysis, and Assessment, 2
 - 1.1.1 Measurement, Description, and Monitoring, 3
 - 1.1.2 Analysis, 5
 - 1.1.3 Assessment and Interpretation, 6
- 1.2 Biomechanics and its Relationship with Physiology and Anatomy, 7

1.3 Scope of the Textbook, 9

- 1.3.1 Signal Processing, 9
- 1.3.2 Kinematics, 10
- 1.3.3 Kinetics, 10
- 1.3.4 Anthropometry, 11
- 1.3.5 Muscle and Joint Biomechanics, 11
- 1.3.6 Electromyography, 11
- 1.3.7 Synthesis of Human Movement, 12
- 1.3.8 Biomechanical Motor Synergies, 12

1.4 References, 12

iii

xiii

2 Signal Processing

- 2.0 Introduction, 14
- 2.1 Auto- and Cross-Correlation Analyses, 14
 - 2.1.1 Similarity to the Pearson Correlation, 15
 - 2.1.2 Formulae for Auto- and Cross-Correlation Coefficients, 16
 - 2.1.3 Four Properties of the Autocorrelation Function, 17
 - 2.1.4 Three Properties of the Cross-Correlation Function, 20
 - 2.1.5 Importance in Removing the Mean Bias from the Signal, 21
 - 2.1.6 Digital Implementation of Auto- and Cross-Correlation Functions, 22
 - 2.1.7 Application of Autocorrelations, 23
 - 2.1.8 Applications of Cross-Correlations, 23
- 2.2 Frequency Analysis, 26
 - 2.2.1 Introduction—Time Domain vs. Frequency Domain, 26
 - 2.2.2 Discrete Fourier (Harmonic) Analysis, 27
 - 2.2.3 Fast Fourier Transform (FFT), 30
 - 2.2.4 Applications of Spectrum Analyses, 30
- 2.3 Ensemble Averaging of Repetitive Waveforms, 41
 - 2.3.1 Examples of Ensemble-Averaged Profiles, 41
 - 2.3.2 Normalization of Time Bases to 100%, 42
 - 2.3.3 Measure of Average Variability about the Mean Waveform, 43
- 2.4 References, 43

3 Kinematics

45

- 3.0 Historical Development and Complexity of Problem, 45
- 3.1 Kinematic Conventions, 46
 - 3.1.1 Absolute Spatial Reference System, 46
 - 3.1.2 Total Description of a Body Segment in Space, 47
- 3.2 Direct Measurement Techniques, 48
 - 3.2.1 Goniometers, 48
 - 3.2.2 Special Joint Angle Measuring Systems, 50
 - 3.2.3 Accelerometers, 50
- 3.3 Imaging Measurement Techniques, 53
 - 3.3.1 Review of Basic Lens Optics, 54

82

- 3.3.2 f-Stop Setting and Field of Focus, 54
- 3.3.3 Cinematography, 55
- 3.3.4 Television, 58
- 3.3.5 Optoelectric Techniques, 61
- 3.3.6 Advantages and Disadvantages of Optical Systems, 63
- 3.3.7 Summary of Various Kinematic Systems, 64
- 3.4 Processing of Raw Kinematic Data, 64
 - 3.4.1 Nature of Unprocessed Image Data, 64
 - 3.4.2 Signal versus Noise in Kinematic Data, 65
 - 3.4.3 Problems of Calculating Velocities and Accelerations, 66
 - 3.4.4 Smoothing and Curve Fitting of Data, 67
 - 3.4.5 Comparison of Some Smoothing Techniques, 74
- 3.5 Calculation of Other Kinematic Variables, 75
 - 3.5.1 Limb-Segment Angles, 75
 - 3.5.2 Joint Angles, 77
 - 3.5.3 Velocities—Linear and Angular, 77
 - 3.5.4 Accelerations—Linear and Angular, 78
- 3.6 Problems Based on Kinematic Data, 79
- 3.7 References, 80

4 Anthropometry

- 4.0 Scope of Anthropometry in Movement Biomechanics, 824.0.1 Segment Dimensions, 82
- 4.1 Density, Mass, and Inertial Properties, 83
 - 4.1.1 Whole-Body Density, 83
 - 4.1.2 Segment Densities, 84
 - 4.1.3 Segment Mass and Center of Mass, 85
 - 4.1.4 Center of Mass of a Multisegment System, 88
 - 4.1.5 Mass Moment of Inertia and Radius of Gyration, 89
 - 4.1.6 Parallel-Axis Theorem, 90
 - 4.1.7 Use of Anthropometric Tables and Kinematic Data, 91
- 4.2 Direct Experimental Measures, 96
 - 4.2.1 Location of the Anatomical Center of Mass of the Body, 96
 - 4.2.2 Calculation of the Mass of a Distal Segment, 96
 - 4.2.3 Moment of Inertia of a Distal Segment, 97
 - 4.2.4 Joint Axes of Rotation, 98

vi CONTENTS

- 4.3 Muscle Anthropometry, 100
 - 4.3.1 Cross-Sectional Area of Muscles, 100
 - 4.3.2 Change in Muscle Length during Movement, 102
 - 4.3.3 Force per Unit Cross-Sectional Area (Stress), 102
 - 4.3.4 Mechanical Advantage of Muscle, 102
 - 4.3.5 Multijoint Muscles, 102
- 4.4 Problems Based on Anthropometric Data, 104
- 4.5 References, 106

5 Kinetics: Forces and Moments of Force

107

- 5.0 Biomechanical Models, 107
 - 5.0.1 Link-Segment Model Development, 108
 - 5.0.2 Forces Acting on the Link-Segment Model, 109
 - 5.0.3 Joint Reaction Forces and Bone-on-Bone Forces, 110
- 5.1 Basic Link-Segment Equations—the Free-Body Diagram, 112
- 5.2 Force Transducers and Force Plates, 117
 - 5.2.1 Multidirectional Force Transducers, 117
 - 5.2.2 Force Plates, 117
 - 5.2.3 Special Pressure-Measuring Sensory Systems, 121
 - 5.2.4 Synchronization of Force Plate and Kinematic Data, 122
 - 5.2.5 Combined Force Plate and Kinematic Data, 123
 - 5.2.6 Interpretation of Moment-of-Force Curves, 124
 - 5.2.7 A Note about the Wrong Way to Analyze Moments of Force, 126
 - 5.2.8 Differences between Center of Mass and Center of Pressure, 127
 - 5.2.9 Kinematics and Kinetics of the Inverted Pendulum Model, 130
- 5.3 Bone-on-Bone Forces During Dynamic Conditions, 131
 - 5.3.1 Indeterminacy in Muscle Force Estimates, 131
 - 5.3.2 Example Problem (Scott and Winter, 1990), 132
- 5.4 Problems Based on Kinetic and Kinematic Data, 136
- 5.5 References, 137

6 Mechanical Work, Energy, and Power

6.0 Introduction, 1396.0.1 Mechanical Energy and Work, 139

- 6.0.2 Law of Conservation of Energy, 140
- 6.0.3 Internal versus External Work, 141
- 6.0.4 Positive Work of Muscles, 143
- 6.0.5 Negative Work of Muscles, 144
- 6.0.6 Muscle Mechanical Power, 144
- 6.0.7 Mechanical Work of Muscles, 145
- 6.0.8 Mechanical Work Done on an External Load, 146
- 6.0.9 Mechanical Energy Transfer between Segments, 148
- 6.1 Efficiency, 149
 - 6.1.1 Causes of Inefficient Movement, 151
 - 6.1.2 Summary of Energy Flows, 154
- 6.2 Forms of Energy Storage, 155
 - 6.2.1 Energy of a Body Segment and Exchanges of Energy Within the Segment, 157
 - 6.2.2 Total Energy of a Multisegment System, 160
- 6.3 Calculation of Internal and External Work, 162
 - 6.3.1 Internal Work Calculation, 162
 - 6.3.2 External Work Calculation, 167
- 6.4 Power Balances at Joints and Within Segments, 167
 - 6.4.1 Energy Transfer via Muscles, 167
 - 6.4.2 Power Balance Within Segments, 168
- 6.5 Problems Based on Kinetic and Kinematic Data, 173
- 6.6 References, 174

7 Three-Dimensional Kinematics and Kinetics

- 7.0 Introduction, 176
- 7.1 Axes Systems, 176
 - 7.1.1 Global Reference System, 177
 - 7.1.2 Local Reference Systems and Rotation of Axes, 177
 - 7.1.3 Other Possible Rotation Sequences, 179
 - 7.1.4 Dot and Cross Products, 179
- 7.2 Marker and Anatomical Axes Systems, 1807.2.1 Example of a Kinematic Data Set, 183
- 7.3 Determination of Segment Angular Velocities and Accelerations, 187

- 7.4 Kinetic Analysis of Reaction Forces and Moments, 188
 - 7.4.1 Newtonian Three-Dimensional Equations of Motion for a Segment, 189
 - 7.4.2 Euler's Three-Dimensional Equations of Motion for a Segment, 189
 - 7.4.3 Example of a Kinetic Data Set, 191
 - 7.4.4 Joint Mechanical Powers, 194
 - 7.4.5 Sample Moment and Power Curves, 195
- 7.5 Suggested Further Reading, 198
- 7.6 References, 198

8 Synthesis of Human Movement—Forward Solutions

200

- 8.0 Introduction, 200
 - 8.0.1 Assumptions and Constraints of Forward Solution Models, 201
 - 8.0.2 Potential of Forward Solution Simulations, 201
- 8.1 Review of Forward Solution Models, 202
- 8.2 Mathematical Formulation, 203
 - 8.2.1 Lagrange's Equations of Motion, 205
 - 8.2.2 The Generalized Coordinates and Degrees of Freedom, 205
 - 8.2.3 The Lagrangian Function L, 207
 - 8.2.4 Generalized Forces [Q], 207
 - 8.2.5 Lagrange's Equations, 208
 - 8.2.6 Points and Reference Systems, 208
 - 8.2.7 Displacement and Velocity Vectors, 210

8.3 System Energy, 214

- 8.3.1 Segment Energy, 215
- 8.3.2 Spring Potential Energy and Dissipative Energy, 216
- 8.4 External Forces and Torques, 216
- 8.5 Designation of Joints, 217
- 8.6 Illustrative Example, 217
- 8.7 Conclusions, 222
- 8.8 References, 222

markadada mulany monther no accenticion

9 Muscle Mechanics

- 9.0 Introduction, 224
 - 9.0.1 The Motor Unit, 224
 - 9.0.2 Recruitment of Motor Units, 225
- 9.0.3 Size Principle, 226
 - 9.0.4 Types of Motor Units—Fast- and Slow-Twitch Classification, 228
 - 9.0.5 The Muscle Twitch, 228
 - 9.0.6 Shape of Graded Contractions, 230
- 9.1 Force-Length Characteristics of Muscles, 231
 - 9.1.1 Force-Length Curve of the Contractile Element, 231
 - 9.1.2 Influence of Parallel Connective Tissue, 232
 - 9.1.3 Series Elastic Tissue, 233
 - 9.1.4 In Vivo Force-Length Measures, 235
- 9.2 Force-Velocity Characteristics, 236
 - 9.2.1 Concentric Contractions, 236
 - 9.2.2 Eccentric Contractions, 238
 - 9.2.3 Combination of Length and Velocity versus Force, 239
 - 9.2.4 Combining Muscle Characteristics with Load Characteristics: Equilibrium, 240
- 9.3 Muscle Modeling, 243

9.3.1 Example of a Model—EMG Driven, 244

9.4 References, 247

10 Kinesiological Electromyography

250

10.0 Introduction, 250

10.1 Electrophysiology of Muscle Contraction, 250

- 10.1.1 Motor End Plate, 251
- 10.1.2 Sequence of Chemical Events Leading to a Twitch, 251
- 10.1.3 Generation of a Muscle Action Potential, 251
- 10.1.4 Duration of the Motor Unit Action Potential, 256
- 10.1.5 Detection of Motor Unit Action Potentials from Electromyogram during Graded Contractions, 256
- 10.2 Recording of the Electromyogram, 257
 - 10.2.1 Amplifier Gain, 258
 - 10.2.2 Input Impedance, 258
 - 10.2.3 Frequency Response, 260

- 10.2.4 Common-Mode Rejection, 261
- 10.2.5 Cross-Talk in Surface Electromyograms, 265
- 10.2.6 Recommendations for Surface Electromyogram Reporting and Electrode Placement Procedures, 268
- 10.3 Processing of the Electromyogram, 269
 - 10.3.1 Full-Wave Rectification, 270
 - 10.3.2 Linear Envelope, 271
 - 10.3.3 True Mathematical Integrators, 272
- 10.4 Relationship between Electromyogram and Biomechanical Variables, 273
 - 10.4.1 Electromyogram versus Isometric Tension, 273
 - 10.4.2 Electromyogram during Muscle Shortening and Lengthening, 275
 - 10.4.3 Electromyogram Changes during Fatigue, 276
- 10.5 References, 277

11 Biomechanical Movement Synergies

- 11.0 Introduction, 281
- 11.1 The Support Moment Synergy, 282
 - 11.1.1 Relationship between M_s and the Vertical Ground Reaction Force, 285
- 11.2 Medial/Lateral and Anterior/Posterior Balance in Standing, 28611.2.1 Quiet Standing, 286
 - 11.2.2 Medial Lateral Balance Control during Workplace Tasks, 288
- 11.3 Dynamic Balance during Walking, 289
 - 11.3.1 The Human Inverted Pendulum in Steady State Walking, 289
 - 11.3.2 Initiation of Gait, 290
 - 11.3.3 Gait Termination, 293
- 11.4 References, 295

APPENDICES

A. Kinematic, Kinetic, and Energy Data

Figure A.1 Walking Trial—Marker Locations and Mass and Frame Rate Information, 296

281

Table A.1	Raw Coordinate Data (cm), 297
Table A.2 (a)	Filtered Marker Kinematics—Rib Cage and Greater Trochanter (Hip), 301
Table A.2 (b)	Filtered Marker Kinematics—Femoral Lateral Epicondyle (Knee) and Head of Fibula, 306
Table A.2 (c)	Filtered Marker Kinematics—Lateral Malleolus (Ankle) and Heel, 311
Table A.2 (d)	Filtered Marker Kinematics—Fifth Metatarsal and Toe, 316
Table A.3 (a)	Linear and Angular Kinematics—Foot, 321
Table A.3 (b)	Linear and Angular Kinematics-Leg, 326
Table A.3 (c)	Linear and Angular Kinematics-Thigh, 331
Table A.3 (d)	Linear and Angular Kinematics-1/2 HAT, 336
Table A.4	Relative Joint Angular Kinematics—Ankle, Knee, and Hip, 341
Table A.5 (a)	Reaction Forces and Moments of Force—Ankle and Knee, 346
Table A.5 (b)	Reaction Forces and Moments of Force-Hip, 350
Table A.6	Segment Potential, Kinetic, and Total Energies—Foot, Leg, Thigh, and ¹ / ₂ HAT, 353
Table A.7	Power Generation/Absorption and Transfer—Ankle, Knee, and Hip, 358

B. Units and Definitions Related to Biomechanical and Electromyographical Measurements

Table B.1	Base SI Units, 361	
Table B.2	Derived SI Units, 361	

Index

367