
-				
C	01	itents		
-	-	The community align (fine for back		
Preface				
110	torie,			
D	Prol	ogue		
	0.1	Books and algorithms		
	0.2	Enter Fibonacci		
	0.3	Big-O notation		
	Exe	rcises		
		2000		
1	Algo	orithms with numbers		
	1.1	Basic arithmetic		
	1.2	Modular arithmetic		
	1.3	Primality testing		
	1.4	Cryptography		
	1.5	Universal hashing		
	Exe	rcises		
	Ran	domized algorithms: a virtual cha	apter	
		galiumen	Automatic field and an annual provider	
2	Div	ide-and-conquer algorithms		
	2.1	Multiplication		
	2.2	Recurrence relations		
	2.3	Mergesort		
	2.4	Medians		
	2.5	Matrix multiplication		
	2.6	The fast Fourier transform		
	Exe	rcises		
3	Dec	compositions of graphs		
	3.1	Why graphs?		
	3.2	Depth-first search in undirected	graphs	
	3.3	Depth-first search in directed gra	phs	
	3.4	Strongly connected components	manager and a state of the state of the	
	Exe	rcises		
	-			
4	Paths in graphs			
28	4.1	Distances		
	4.2	Breadth-first search		

	4.3 Lengths on edges		107			
	4.4 Dijkstra's algorithm		108			
	4.5 Priority queue implementati	ons	113			
	4.6 Shortest paths in the present	ce of negative edges	115			
	4.7 Shortest paths in dags		119			
	Exercises		120			
5	Greedy algorithms		127			
	5.1 Minimum spanning trees		127			
	5.2 Huffman encoding		138			
	5.3 Horn formulas		144			
	5.4 Set cover		145			
	Exercises		148			
			150			
6	Dynamic programming		150			
	6.1 Shortest paths in dags, revis	sited	150			
	6.2 Longest increasing subsequ	ences	157			
	6.3 Edit distance		159			
	6.4 Knapsack		164			
	6.5 Chain matrix multiplication	.3 Primality testine	108			
	6.6 Shortest paths		171			
	6.7 Independent sets in trees		175			
	Exercises		177			
			188			
7	Linear programming and reduc	tions	188			
	7.1 An introduction to linear p	rogramming	100			
	7.2 Flows in networks		205			
	7.3 Bipartite matching		205			
	7.4 Duality		200			
	7.5 Zero-sum games		209			
	7.6 The simplex algorithm		215			
	7.7 Postscript: circuit evaluatio	.5 Matrix multiplication n	221			
	Exercises		222			
			232			
8	NP-complete problems		232			
	8.1 Search problems		243			
	8.2 NP-complete problems		243			
	8.3 The reductions		264			
	Exercises		209			
			271			
9	Coping with NP-completeness					
	9.1 Intelligent exhaustive sear	cn	276			
	9.2 Approximation algorithms	the in graphs	285			
	9.3 Local search heuristics		293			
	Exercises		270			

vi Contents

10	Quantum algorithms		
	10.1	Qubits, superposition, and measurement	297
	10.2	The plan	297
	10.3	The quantum Fourier transform	301
	10.4	Periodicity	303
	10.1	Quantum circuita	305
	10.5	Factoring and in the	307
	10.0	Factoring as periodicity	310
	10.7	The quantum algorithm for factoring	311
	Exercises		
Sea.			511
Hist	torical	notes and further reading	317

Index

317

programming), and partly to reflect the manufine and the long and a 319 PS we have come to see it. The notes in 29195(h) fourier at 800 litro a losino basing and