CONTENTS

	### 100 PM	
1.	. The System of Numbers: An Overview	1
	1.1 From natural to real numbers	3
	1.2 Imaginary numbers	9
	1.3 Polynomials and transcendental numbers	A 5.8511
	1.4 Cardinals and ordinals	15
2.	Writing Numbers—Now and Back Then	
	2.1 Writing numbers nowadays: positional and decimal	17
	2.2 Writing numbers back then: Egypt, Babylon and Greece	24
3.	Numbers and Magnitudes in the Greek Mathematical Tradition	31
	3.1 Pythagorean numbers	
	3.2 Ratios and proportions	
	3.3 Incommensurability	
	3.4 Eudoxus' theory of proportions	42
	3.5 Greek fractional numbers	
	3.6 Comparisons, not measurements	
	3.7 A unit length	50
	Appendix 3.1 The incommensurability of $\sqrt{2}$. Ancient and	
	modern proofs	
	Appendix 3.2 Eudoxus' theory of proportions in action	
	Appendix 3.3 Euclid and the area of the circle	59
4.	. Construction Problems and Numerical Problems	
	in the Greek Mathematical Tradition	63
	4.1 The arithmetic books of the <i>Elements</i>	
	4.2 Geometric algebra?	
	4.3 Straightedge and compass	
	4.4 Diophantus' numerical problems	
	4.5 Diophantus' reciprocals and fractions	
	4.6 More than three dimensions	
	Appendix 4.1 Diophantus' solution of Problem V.9 in Arithmetica	83

5.	. Numbers in the Tradition of Medieval Islam	87
	5.1 Islamicate science in historical perspective	88
	5.2 Al-Khwārizmī and numerical problems with squares	90
	5.3 Geometry and certainty	94
	5.4 Al-jabr wa'l-muqābala	97
	5.5 Al-Khwārizmī, numbers and fractions	100
	5.6 Abū Kāmil's numbers at the crossroads of two traditions	103
	5.7 Numbers, fractions and symbolic methods	107
	5.8 Al-Khayyām and numerical problems with cubes	111
	5.9 Gersonides and problems with numbers	116
	Appendix 5.1 The quadratic equation. Derivation of the algebraic form	ula 120
	Appendix 5.2 The cubic equation. Khayyam's geometric solution	121
	system of Numbers: An Overview	
6.	Numbers in Europe from the Twelfth to the Sixteenth Centuries	125
	6.1 Fibonacci and Hindu-Arabic numbers in Europe	128
	6.2 Abbacus and coss traditions in Europe	129
	6.3 Cardano's Great Art of Algebra	138
	6.4 Bombelli and the roots of negative numbers	146
	6.5 Euclid's <i>Elements</i> in the Renaissance	149
	Appendix 6.1 Casting out nines	150
7.	Number and Equations at the Beginning of the Scientific Revolution	on 155
	7.1 Viète and the new art of analysis	157
	7.2 Stevin and decimal fractions	163
	7.3 Logarithms and the decimal system of numeration	167
	Appendix 7.1 Napier's construction of logarithmic tables	171
8.	Number and Equations in the Works of Descartes, Newton	
	and their Contemporaries	175
	8.1 Descartes' new approach to numbers and equations	176
	8.2 Wallis and the primacy of algebra	182
	8.3 Barrow and the opposition to the primacy of algebra	187
	8.4 Newton's Universal Arithmetick	190
	Appendix 8.1 The quadratic equation. Descartes' geometric solution	196
	Appendix 8.2 Between geometry and algebra in the seventeenth	
	century: The case of Euclid's Elements	198
9.	New Definitions of Complex Numbers in the Early	
	Nineteenth Century	207
	9.1 Numbers and ratios: giving up metaphysics	208
	9.2 Euler, Gauss and the ubiquity of complex numbers	209
	9.3 Geometric interpretations of the complex numbers	212
	9.4 Hamilton's formal definition of complex numbers	215
	9.5 Beyond complex numbers	217
	9.6 Hamilton's discovery of quaternions	220

10.	"What Are Numbers and What Should They Be?"	
	Understanding Numbers in the Late Nineteenth Century	223
	10.1 What are numbers?	224
	10.2 Kummer's ideal numbers	225
	10.3 Fields of algebraic numbers	228
	10.4 What should numbers be?	231
	10.5 Numbers and the foundations of calculus	234
	10.6 Continuity and irrational numbers	237
	Appendix 10.1 Dedekind's theory of cuts and Eudoxus' theory of	
	proportions	243
	Appendix 10.2 IVT and the fundamental theorem of calculus	245
11.	Exact Definitions for the Natural Numbers: Dedekind,	
	Peano and Frege	249
	11.1 The principle of mathematical induction	250
	11.2 Peano's postulates	251
	11.3 Dedekind's chains of natural numbers	257
	11.4 Frege's definition of cardinal numbers	259
	Appendix 11.1 The principle of induction and Peano's postulates	262
12.	Numbers, Sets and Infinity. A Conceptual Breakthrough at	
	the Turn of the Twentieth Century	265
	12.1 Dedekind, Cantor and the infinite	266
	12.2 Infinities of various sizes	269
	12.3 Cantor's transfinite ordinals	277
	12.4 Troubles in paradise	280
	Appendix 12.1 Proof that the set of algebraic numbers is countable	287
13.	Epilogue: Numbers in Historical Perspective	291
Refe	rences and Suggestions for Further Reading	295
Van	Name Index	
Suh	uhiort Index	