CONTENTS

Part I Chemical and Molecular Foundations

1

1 LIFE BEGINS WITH CELLS

1.1 The Diversity and Commonality	
of Cells	1
All Cells Are Prokaryotic or Eukaryotic	1
Unicellular Organisms Help and Hurt Us	4
Viruses Are the Ultimate Parasites	6
Changes in Cells Underlie Evolution	6
Even Single Cells Can Have Sex	7
We Develop from a Single Cell	8
Stem Cells, Fundamental to Forming Tissues and Organs, Offer Medical Opportunities	8
1.2 The Molecules of a Cell	9
Small Molecules Carry Energy, Transmit Signals, and Are Linked into Macromolecules	9
Proteins Give Cells Structure and Perform Most Cellular Tasks	10
Nucleic Acids Carry Coded Information for Making Proteins at the Right Time and Place	11
The Genome Is Packaged into Chromosomes and Replicated During Cell Division	12
Mutations May Be Good, Bad, or Indifferent	13
1.3 The Work of Cells	14
Cells Build and Degrade Numerous Molecules and Structures	15
Animal Cells Produce Their Own External Environment and Glues	16
Cells Change Shape and Move	16
Cells Sense and Send Information	16
Cells Regulate Their Gene Expression to Meet Changing Needs	17

Cells Grow and Divide	18
Cells Die from Aggravated Assault or an Internal Program	19
1.4 Investigating Cells and Their Parts	20
Cell Biology Reveals the Size, Shape, Location, and Movements of Cell Components	20
Biochemistry and Biophysics Reveal the Molecular Structure and Chemistry of Purified Cell Constituents	21
Genetics Reveals the Consequences of Damaged Genes	22
Genomics Reveals Differences in the Structure and Expression of Entire Genomes	23
Developmental Biology Reveals Changes in the Properties of Cells as They Specialize	23
Choosing the Right Experimental Organism for the Job	25
The Most Successful Biological Studies Use Multiple Approaches	27
1.5 A Genome Perspective on Evolution	28
Metabolic Proteins, the Genetic Code, and Organelle Structures Are Nearly Universal	28
Darwin's Ideas About the Evolution of Whole Animals Are Relevant to Genes	28
Many Genes Controlling Development Are Remarkably Similar in Humans and Other Animals	28
Human Madicina la Informad by Basaarsh an Othar	

Human	Medicine	IS I	nformed	by	Research on Other	
Orga	nisms					29

2 CHEMICAL FOUNDATIONS 31

2.1 Covalent Bonds and Noncovalent Interactions

The Electronic Structure of an Atom Determines the Number and Geometry of Covalent Bonds It Can Make 33

Electrons May Be Shared Equally or Unequally in Covalent Bonds	34
Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions	35
Ionic Interactions Are Attractions between Oppositely Charged Ions	36
Hydrogen Bonds Determine the Water Solubility of Uncharged Molecules	37
Van der Waals Interactions Are Caused by Transient Dipoles	37
The Hydrophobic Effect Causes Nonpolar Molecules to Adhere to One Another	38
Molecular Complementarity Mediated via Noncovalent Interactions Permits Tight, Highly Specific Binding of Biomolecules	39
2.2 Chemical Building Blocks of Cells	40
Amino Acids Differing Only in Their Side Chains	
Compose Proteins Five Different Nucleotides Are Used to Build	41
Nucleic Acids	44
Form Linear and Branched Polysaccharides	44
Phospholipids Associate Noncovalently to Form the Basic Bilayer Structure of Biomembranes	46
2.3 Chemical Equilibrium	49
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction	49 50
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State	49 50 50
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules	49 50 50
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values	49 50 50 50 51
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases	49 50 50 50 51 52
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and	49 50 50 51 52
2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids	49 50 50 51 52 52
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics 	49 50 50 51 52 52 52
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics Several Forms of Energy Are Important in Biological Systems 	49 50 50 51 52 52 54
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics Several Forms of Energy Are Important in Biological Systems Cells Can Transform One Type of Energy into Another 	49 50 50 51 52 52 52 54 54
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics Several Forms of Energy Are Important in Biological Systems Cells Can Transform One Type of Energy into Another The Change in Free Energy Determines the Direction of a Chemical Reaction 	49 50 50 51 52 52 52 54 54 55
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics Several Forms of Energy Are Important in Biological Systems Cells Can Transform One Type of Energy into Another The Change in Free Energy Determines the Direction of a Chemical Reaction The AG^{er} of a Reaction Can Be Calculated from Its K_{eq} 	 49 50 50 51 52 52 54 55 55 56
 2.3 Chemical Equilibrium Equilibrium Constants Reflect the Extent of a Chemical Reaction Chemical Reactions in Cells Are at Steady State Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules Biological Fluids Have Characteristic pH Values Hydrogen Ions Are Released by Acids and Taken Up by Bases Buffers Maintain the pH of Intracellular and Extracellular Fluids 2.4 Biochemical Energetics Several Forms of Energy Are Important in Biological Systems Cells Can Transform One Type of Energy into Another The Change in Free Energy Determines the Direction of a Chemical Reaction The AG^{er} of a Reaction Can Be Calculated from Its K_{eq} The Rate of a Reaction Depends on the Activation Energy Necessary to Energize the Reactants into a Transition State 	49 50 50 51 52 52 52 54 55 55 56

Life Depends on the Coupling of Unfavorable Chemical Reactions with Energetically Favorable Reactions	57
Hydrolysis of ATP Releases Substantial Free Energy and Drives Many Cellular Processes	57
ATP Is Generated During Photosynthesis and Respiration	59
NAD ⁺ and FAD Couple Many Biological Oxidation and Reduction Reactions	59

3 PROTEIN STRUCTURE AND FUNCTION

3.1 Hierarchical Structure of Proteins	64
The Primary Structure of a Protein Is Its Linear Arrangement of Amino Acids	65
Secondary Structures Are the Core Elements of Protein Architecture	66
Overall Folding of a Polypeptide Chain Yields Its Tertiary Structure	67
Different Ways of Depicting the Conformation of Proteins Convey Different Types of Information	68
Structural Motifs Are Regular Combinations of Secondary and Tertiary Structures	68
Structural and Functional Domains Are Modules of Tertiary Structure	70
Proteins Associate into Multimeric Structures and Macromolecular Assemblies	72
Members of Protein Families Have a Common Evolutionary Ancestor	72
3.2 Protein Folding	74
Planar Peptide Bonds Limit the Shapes into Which Proteins Can Fold	74
Information Directing a Protein's Folding Is Encoded in Its Amino Acid Sequence	74
Folding of Proteins in Vivo Is Promoted by Chaperones	75
Alternatively Folded Proteins Are Implicated in Diseases	77
3.3 Protein Function	78

Specific Binding of Ligands Underlies the Functions of Most Proteins	78
Enzymes Are Highly Efficient and Specific Catalysts	79
An Enzyme's Active Site Binds Substrates and Carries Out Catalysis	80
Serine Proteases Demonstrate How an Enzyme's Active Site Works	81
Enzymes in a Common Pathway Are Often Physically Associated with One Another	84

into Motion	85
3.4 Regulating Protein Function I: Protein Degradation	86
Regulated Synthesis and Degradation of Proteins is a Fundamental Property of Cells	86
The Proteasome Is a Complex Molecular Machine Used to Degrade Proteins	87
Ubiquitin Marks Cytosolic Proteins for Degradation in Proteasomes	88
3.5 Regulating Protein Function II: Noncovalent and Covalent Modifications	88
Noncovalent Binding Permits Allosteric, or Cooperative, Regulation of Proteins	89
Noncovalent Binding of Calcium and GTP Are Widely Used As Allosteric Switches to Control Protein Activity	90
Phosphorylation and Dephosphorylation Covalently Regulate Protein Activity	91
Proteolytic Cleavage Irreversibly Activates or Inactivates Some Proteins	91
Higher-Order Regulation Includes Control of Protein Location and Concentration	92

3.6	Purifying, Detecting, and	
	Characterizing Proteins	92
Centrif Mol	ugation Can Separate Particles and ecules That Differ in Mass or Density	92
Electro of T	phoresis Separates Molecules on the Basis heir Charge-to-Mass Ratio	94
Liquid Mas	Chromatography Resolves Proteins by ss, Charge, or Binding Affinity	96
Highly Det	Specific Enzyme and Antibody Assays Can ect Individual Proteins	98
Radioi: Biol	sotopes Are Indispensable Tools for Detecting ogical Molecules	99
Mass S and	pectrometry Can Determine the Mass Sequence of Proteins	101
Proteir Che	n Primary Structure Can Be Determined by mical Methods and from Gene Sequences	103
Proteir Phy	n Conformation Is Determined by Sophisticated sical Methods	103
3.7	Proteomics	105
Proteo	mics Is the Study of All or a Large Subset	

of Proteins in a Biological System	
Advanced Techniques in Mass Spectrometry Are	
Critical to Proteomic Analysis	106

Part II Genetics and Molecular Biology

4 BASIC MOLECULAR GENETIC MECHANISMS	111
TRA I	
4.1 Structure of Nucleic Acids	113
A Nucleic Acid Strand Is a Linear Polymer with End-to-End Directionality	113
Native DNA Is a Double Helix of Complementary Antiparallel Strands	114
DNA Can Undergo Reversible Strand Separation	116
Torsional Stress in DNA Is Relieved by Enzymes	117
Different Types of RNA Exhibit Various Conformations Related to Their Functions	118
4.2 Transcription of Protein-Coding Genes and Formation of Functiona	 120
IIIKNA	120
A Template DNA Strand Is Transcribed into a Complementary RNA Chain by RNA Polymerase	120

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA	122
Eukaryotic Precursor mRNAs Are Processed to Form Functional mRNAs	123
Alternative RNA Splicing Increases the Number of Proteins Expressed from a Single Eukaryotic Gene	125
4.3 The Decoding of mRNA by tRNAs	127
Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code	127
The Folded Structure of tRNA Promotes Its Decoding Functions	129
Nonstandard Base Pairing Often Occurs Between Codons and Anticodons	130
Amino Acids Become Activated When Covalently Linked to tRNAs	131
4.4 Stepwise Synthesis of Proteins on Ribosomes	132
Ribosomes Are Protein-Synthesizing Machines	132

Methionyl-tRNA ^{MET} Recognizes the AUG Start Codon	133
Translation Initiation Usually Occurs at the First AUG from the 5' End of an mRNA	133
During Chain Elongation Each Incoming Aminoacyl-tRNA Moves Through Three Ribosomal Sites	135
Translation Is Terminated by Release Factors When a Stop Codon Is Reached	137
Polysomes and Rapid Ribosome Recycling Increase the Efficiency of Translation	138
4.5 DNA Replication	139
DNA Polymerases Require a Primer to Initiate Replication	140
Duplex DNA Is Unwound and Daughter Strands Are Formed at the DNA Replication Fork	141
Several Proteins Participate in DNA Replication	141
Each Origin	143
4.6 DNA Repair and Recombination	145
DNA Polymerases Introduce Copying Errors and Also Correct Them	145
Chemical and Radiation Damage to DNA Can Lead to Mutations	145
High-Fidelity DNA Excision-Repair Systems Recognize and Repair Damage	147
Base Excision Repairs T·G Mismatches and Damaged Bases	147
Mismatch Excision Repairs Other Mismatches and Small Insertions and Deletions	147
Nucleotide Excision Repairs Chemical Adducts That Distort Normal DNA Shape	148
Two Systems Utilize Recombination to Repair Double-Strand Breaks in DNA	149
Homologous Recombination Can Repair DNA Damage and Generate Genetic Diversity	150
4.7 Viruses: Parasites of the Cellular	
	154
iviost viral Host Ranges Are Narrow Viral Capsids Are Regular Arrays of One or a	154
Few Types of Protein	154
Viruses Can Be Cloned and Counted in Plaque Assays	155

Lytic Viral Growth Cycles Lead to the Death of Host Cells	156	of Specific DNA Fragments and mRNAs	191
Viral DNA Is Integrated into the Host-Cell Genome		DNA Microarrays Can Be Used to Evaluate the	
in Some Nonlytic Viral Growth Cycles	158	Expression of Many Genes at One Time	192

5 MOLECULAR GENETIC TECHNIQUES 165

5.1 Genetic Analysis of Mutations to Identify and Study Genes	166
Recessive and Dominant Mutant Alleles Generally Have Opposite Effects on Gene Function	166
Segregation of Mutations in Breeding Experiments Reveals Their Dominance or Recessivity	167
Conditional Mutations Can Be Used to Study Essential Genes in Yeast	170
Recessive Lethal Mutations in Diploids Can Be Identified by Inbreeding and Maintained in Heterozygotes	171
Complementation Tests Determine Whether Different Recessive Mutations Are in the Same Gene	171
Double Mutants Are Useful in Assessing the Order in Which Proteins Function	171
Genetic Suppression and Synthetic Lethality Can Reveal Interacting or Redundant Proteins	173
Genes Can Be Identified by Their Map Position on the Chromosome	174
5.2 DNA Cloning and Characterization	176
Restriction Enzymes and DNA Ligases Allow Insertion of DNA Fragments into Cloning Vectors	176
<i>E. coli</i> Plasmid Vectors Are Suitable for Cloning Isolated DNA Fragments	178
cDNA Libraries Represent the Sequences of Protein-Coding Genes	179
cDNAs Prepared by Reverse Transcription of Cellular mRNAs Can Be Cloned to Generate cDNA Libraries	181
DNA Libraries Can Be Screened by Hybridization to an Oligonucleotide Probe	181
Yeast Genomic Libraries Can Be Constructed with Shuttle Vectors and Screened by Functional	
Complementation Gel Electrophoresis Allows Separation of Vector	182
DNA from Cloned Fragments	184
by the Dideoxy Chain-Termination Method	187
The Polymerase Chain Reaction Amplifies a Specific DNA Sequence from a Complex Mixture	188
5.3 Using Cloned DNA Fragments	191
Hybridization Techniques Permit Detection	
of Specific DNA Fragments and mRNAs	191
DNA Microarrays Can Be Used to Evaluate the	

Cluster Analysis of Multiple Expression Experiments Identifies Co-regulated Genes	193
E. coli Expression Systems Can Produce Large Quantities of Proteins from Cloned Genes	194
Plasmid Expression Vectors Can Be Designed for Use in Animal Cells	196
5.4 Identifying and Locating Human Disease Genes	198
Many Inherited Diseases Show One of Three Major Patterns of Inheritance	199
DNA Polymorphisms Are Used in Linkage-Mapping Human Mutations	200
Linkage Studies Can Map Disease Genes with a Resolution of About 1 Centimorgan	201
Further Analysis Is Needed to Locate a Disease Gene in Cloned DNA	202
Many Inherited Diseases Result from Multiple Genetic Defects	203
082 ¹⁴² als	
5.5 Inactivating the Function of Specific Genes in Eukaryotes	204
Normal Yeast Genes Can Be Replaced with Mutant Alleles by Homologous Recombination	205
Transcription of Genes Ligated to a Regulated Promoter Can Be Controlled Experimentally	206
Specific Genes Can Be Permanently Inactivated in the Germ Line of Mice	207
Somatic Cell Recombination Can Inactivate Genes in Specific Tissues	208
Dominant-Negative Alleles Can Functionally Inhibit Some Genes	209
RNA Interference Causes Gene Inactivation by Destroying the Corresponding mRNA	210
-Bacon	
6 GENES, GENOMICS, AND CHROMOSOMES	215
6.1 Eukaryotic Gene Structure	217
Most Eukaryotic Genes Contain Introns and Produce mRNAs Encoding Single Proteins	217

Simple and Complex Transcription Units Are Found in Eukaryotic Genomes	217
Protein-Coding Genes May Be Solitary or Belong to a Gene Family	219
Heavily Used Gene Products Are Encoded by Multiple Copies of Genes	221

Nonprotein-Coding Genes Encode Functional RNAs		
6.2	Chromosomal Organization	

222

of Genes and Noncoding DNA	223
Genomes of Many Organisms Contain Much Nonfunctional DNA	223
Most Simple-Sequence DNAs Are Concentrated in Specific Chromosomal Locations	224
DNA Fingerprinting Depends on Differences in Length of Simple-Sequence DNAs	225
Unclassified Spacer DNA Occupies a Significant Portion of the Genome	225
6.3 Transposable (Mobile) DNA Elements	226
Movement of Mobile Elements Involves a DNA or an RNA Intermediate	226
DNA Transposons Are Present in Prokaryotes and Eukaryotes	227
LTR Retrotransposons Behave Like Intracellular Retroviruses	229
Non-LTR Retrotransposons Transpose by a Distinct Mechanism	230
Other Retrotransposed RNAs Are Found in Genomic DNA	234
Mobile DNA Elements Have Significantly Influenced Evolution	234

6.4 Organelle DNAs

Mitochondria Contain Multiple mtDNA Molecules	237
mtDNA Is Inherited Cytoplasmically	237
The Size, Structure, and Coding Capacity of mtDNA Vary Considerably Between Organisms	238
Products of Mitochondrial Genes Are Not Exported	240
Mitochondria Evolved from a Single Endosymbiotic Event Involving a <i>Rickettsia</i> -like Bacterium	240
Mitochondrial Genetic Codes Differ from the Standard Nuclear Code	240
Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Humans	240
Chloroplasts Contain Large DNAs Often Encoding More Than a Hundred Proteins	242
6.5 Genomics: Genome-wide Analysis	

of Gene Structure and Expression 243

Stored Sequences Suggest Functions of Newly Identified Genes and Proteins

243

Comparison of Related Sequences from Different Species Can Give Clues to Evolutionary Relationships Among Proteins	244
Genes Can Be Identified Within Genomic DNA Sequences	244
The Number of Protein-Coding Genes in an Organism's Genome Is Not Directly Related to Its Biological Complexity	245
Single Nucleotide Polymorphisms and Gene Copy- Number Variation Are Important Determinants of Differences Between Individuals of a Species	246
6.6 Structural Organization of Eukaryotic Chromosomes	247
Chromatin Exists in Extended and Condensed Forms Modifications of Histone Tails Control Chromatin	248
Condensation and Function	250
Nonhistone Proteins Provide a Structural Scaffold for Long Chromatin Loops	254
Additional Nonhistone Proteins Regulate Transcription and Replication	256
6.7 Morphology and Functional Elemen of Eukaryotic Chromosomes	ts 257
Chromosome Number, Size, and Shape at Metaphase Are Species-Specific	257
During Metaphase, Chromosomes Can Be Distinguished by Banding Patterns and Chromosome Painting	258
Chromosome Painting and DNA Sequencing Reveal the Evolution of Chromosomes	259
Interphase Polytene Chromosomes Arise by DNA Amplification	260
Three Functional Elements Are Required for Replication and Stable Inheritance of Chromosomes	on 261
Centromere Sequences Vary Greatly in Length	263
Addition of Telomeric Sequences by Telomerase Prevents Shortening of Chromosomes	263

7 TRANSCRIPTIONAL CONTROL OF GENE EXPRESSION

7.1 Control of Gene Expression in Bacteria

Transcription Initiation by Bacterial RNA Polymerase Requires Association with a Sigma Factor	
Initiation of <i>lac</i> Operon Transcription Can Be Repressed and Activated	271

Small Molecules Regulate Expression of Many Bacterial Genes via DNA-Binding Repressors and Activators	273
Transcription Initiation from Some Promoters Requires Alternative Sigma Factors	273
Transcription by σ^{54} -RNA Polymerase Is Controlled by Activators That Bind Far from the Promoter	274
Many Bacterial Responses Are Controlled by Two-Component Regulatory Systems	275
7.2 Overview of Eukaryotic Gene Control and RNA Polymerases	276
Regulatory Elements in Eukaryotic DNA Are Found Both Close to and Many Kilobases Away from Transcription Start Sites	276
Three Eukaryotic Polymerases Catalyze Formation of Different RNAs	278
The Largest Subunit in RNA Polymerase II Has an Essential Carboxyl-Terminal Repeat	279
RNA Polymerase II Initiates Transcription at DNA Sequences Corresponding to the 5' Cap of mRNAs	280
7.3 Regulatory Sequences in Protein- Coding Genes	282
The TATA Box, Initiators, and CpG Islands Function as Promoters in Eukaryotic DNA	282
Promoter-Proximal Elements Help Regulate Eukaryotic Genes	282
Distant Enhancers Often Stimulate Transcription by RNA Polymerase II	284
Most Eukaryotic Genes Are Regulated by Multiple Transcription-Control Elements	285
7.4 Activators and Repressors of Transcription	286
Footprinting and Gel-Shift Assays Detect Protein-DNA Interactions	286
Activators Are Modular Proteins Composed of Distinct Functional Domains and Promote Transcription	288
Repressors Inhibit Transcription and Are the Functional Converse of Activators	290
DNA-Binding Domains Can Be Classified into Numerous Structural Types	290
Structurally Diverse Activation and Repression Domains Regulate Transcription	293
Transcription Factor Interactions Increase Gene-Control Options	294

7.5 Transcription Initiation by RNA Polymerase II	296
General Transcription Factors Position RNA Polymerase II at Start Sites and Assist in Initiation	296
Sequential Assembly of Proteins Forms the Pol II Transcription Preinitiation Complex in Vitro	297
In Vivo Transcription Initiation by Pol II Requires Additional Proteins	298
7.6 Molecular Mechanisms of Transcript Repression and Activation	ion 299
Formation of Heterochromatin Silences Gene Expression at Telomeres, Near Centromeres, and in Other Regions	299
Repressors Can Direct Histone Deacetylation and Methylation at Specific Genes	303
Activators Can Direct Histone Acetylation and Methylation at Specific Genes	305
Chromatin-Remodeling Factors Help Activate or Repress Transcription	306
Histone Modifications Vary Greatly in Their Stabilities	307
The Mediator Complex Forms a Molecular Bridge Between Activation Domains and Pol II	307
Transcription of Many Genes Requires Ordered Binding and Function of Activators and Co-activators	308
The Yeast Two-Hybrid System Exploits Activator Flexibi to Detect cDNAs That Encode Interacting Proteins	lity 310
Activity	311
All Nuclear Receptors Share a Common Domain Structure	312
Nuclear-Receptor Response Elements Contain Inverted or Direct Repeats	313
Hormone Binding to a Nuclear Receptor Regulates Its Activity as a Transcription Factor	313
285	
7.8 Regulated Elongation and Termination of Transcription	314
Transcription of the HIV Genome Is Regulated by an Antitermination Mechanism	315
Promoter-Proximal Pausing of RNA Polymerase II Occurs in Some Rapidly Induced Genes	316
7.9 Other Eukaryotic Transcription Systems	316
Transcription Initiation by Pol I and Pol III Is Analogous to That by Pol II	316

Mitochondrial and Chloroplast DNAs A	Are
Transcribed by Organelle-Specific R	NA
Polymerases	

317

337

341

8	POST-TRANSCRIPTIONAL GENE	
	CONTROL	323

8.1 Processing of Eukaryotic Pre-mRNA 325

The 5' Cap Is Added to Nascent RNAs Shortly After Transcription Initiation	325
A Diverse Set of Proteins with Conserved RNA-Binding Domains Associate with Pre-mRNAs	326
Splicing Occurs at Short, Conserved Sequences in Pre-mRNAs via Two Transesterification Reactions	329
During Splicing, snRNAs Base-Pair with Pre-mRNA	330
Spliceosomes, Assembled from snRNPs and a Pre-mRNA, Carry Out Splicing	330
Chain Elongation by RNA Polymerase II Is Coupled to the Presence of RNA-Processing Factors	333
SR Proteins Contribute to Exon Definition in Long Pre-mRNAs	333
Self-Splicing Group II Introns Provide Clues to the Evolution of snRNAs	334
3' Cleavage and Polyadenylation of Pre-mRNAs Are Tightly Coupled	335
Nuclear Exonucleases Degrade RNA That Is Processed Out of Pre-mRNAs	336

8.2 Regulation of Pre-mRNA Processing

337
338
339
340

8.3 Transport of mRNA Across the Nuclear Envelope

Nuclear Pore Complexes Control Import and Export from the Nucleus	342
Pre-mRNAs in Spliceosomes Are Not Exported from the Nucleus	345
HIV Rev Protein Regulates the Transport of Unspliced Viral mRNAs	346

8.4 Cytoplasmic Mechanisms of Post- transcriptional Control	347
Micro RNAs Repress Translation of Specific mRNAs	347
RNA Interference Induces Degradation of Precisely Complementary mRNAs	349
Cytoplasmic Polyadenylation Promotes Translation of Some mRNAs	351
Degradation of mRNAs in the Cytoplasm Occurs by Several Mechanisms	352
Protein Synthesis Can Be Globally Regulated	353
Sequence-Specific RNA-Binding Proteins Control Specific mRNA Translation	356
Surveillance Mechanisms Prevent Translation of Improperly Processed mRNAs	357

Localization of mRNAs Permits Production of Proteins at Specific Regions Within the Cytoplasm	
8.5 Processing of rRNA and tRNA	358
Pre-rRNA Genes Function as Nucleolar Organizers and Are Similar in All Eukaryotes	359
Small Nucleolar RNAs Assist in Processing Pre-rRNAs	360
Self-Splicing Group I Introns Were the First Examples of Catalytic RNA	363
Pre-tRNAs Undergo Extensive Modification in the Nucleus	<mark>36</mark> 3
Nuclear Bodies Are Functionally Specialized Nuclear Domains	364

Part III Cell Structure and Function

9 VISUALIZING, FRACTIONATING, AND CULTURING CELLS	371
9.1 Organelles of the Eukaryotic Cell	372
The Plasma Membrane Has Many Common Functions in All Cells	372
Endosomes Take Up Soluble Macromolecules from the Cell Exterior	372
Lysosomes Are Acidic Organelles That Contain a Battery of Degradative Enzymes	373
Peroxisomes Degrade Fatty Acids and Toxic Compounds	374
The Endoplasmic Reticulum Is a Network of Interconnected Internal Membranes	375
The Golgi Complex Processes and Sorts Secreted and Membrane Proteins	376
Plant Vacuoles Store Small Molecules and Enable a Cell to Elongate Rapidly	377
The Nucleus Contains the DNA Genome, RNA Synthetic Apparatus, and a Fibrous Matrix	378
Mitochondria Are the Principal Sites of ATP Production in Aerobic Nonphotosynthetic Cells	378
Chloroplasts Contain Internal Compartments in Which Photosynthesis Takes Place	379
9.2 Light Microscopy: Visualizing Cell Structure and Localizing Proteins Within Cells	380
The Resolution of the Light Microscope Is About	

The negotation of	the Light Microscope is About	
0.2 μm		381

Phase-Contrast and Differential Interference Contrast Microscopy Visualize Unstained Living Cells	381
Fluorescence Microscopy Can Localize and Quantify Specific Molecules in Live Cells	382
Imaging Subcellular Details Often Requires that the Samples Be Fixed, Sectioned, and Stained	384
Immunofluorescence Microscopy Can Detect Specific Proteins in Fixed Cells	385
Confocal and Deconvolution Microscopy Enable Visualization of Three-Dimensional Objects	386
Graphics and Informatics Have Transformed Modern Microscopy	387
9.3 Electron Microscopy: Methods and Applications	388
Resolution of Transmission Electron Microscopy is Vastly Greater Than That of Light Microscopy	388
Cryoelectron Microscopy Allows Visualization of Particles Without Fixation or Staining	389
Electron Microscopy of Metal-Coated Specimens Can Reveal Surface Features of Cells and Their Components	390
9.4 Purification of Cell Organelles	391
Disruption of Cells Releases Their Organelles and Other Contents	391
Centrifugation Can Separate Many Types of Organelles	392
Organelle-Specific Antibodies Are Useful in Preparing Highly Purified Organelles	393

9.5 Isolation, Culture, and Differentiation of Metazoan Cells 394

Flow Cytometry Separates Different Cell Types	394
Culture of Animal Cells Requires Nutrient-Rich Media and Special Solid Surfaces	395
Primary Cell Cultures Can Be Used to Study Cell Differentiation	396
Primary Cell Cultures and Cell Strains Have a Finite Life Span	396
Transformed Cells Can Grow Indefinitely in Culture	397
Some Cell Lines Undergo Differentiation in Culture	398
Hybrid Cells Called Hybridomas Produce Abundant Monoclonal Antibodies	400
HAT Medium Is Commonly Used to Isolate Hybrid Cells	402
CLASSIC EXPERIMENT 9.1 Separating Organelles	407

10 BIOMEMBRANE STRUCTURE 409

10.1 Biomembranes: Lipid Compositio and Structural Organization	n 411
Phospholipids Spontaneously Form Bilayers	411
Phospholipid Bilayers Form a Sealed Compartment Surrounding an Internal Aqueous Space	411
Biomembranes Contain Three Principal Classes of Lipids	415
Most Lipids and Many Proteins Are Laterally Mobile in Biomembranes	416
Lipid Composition Influences the Physical Properties of Membranes	418
Lipid Composition Is Different in the Exoplasmic and Cytosolic Leaflets	419
Cholesterol and Sphingolipids Cluster with Specific Proteins in Membrane Microdomains	420
10.2 Biomembranes: Protein Compone and Basic Functions	ents 421
Proteins Interact with Membranes in Three Different Ways	421
Most Transmembrane Proteins Have Membrane-Spanning α Helices	422
Multiple β Strands in Porins Form Membrane-Spanning "Barrels"	424
Covalently Attached Hydrocarbon Chains Anchor Some Proteins to Membranes	424
All Transmembrane Proteins and Glycolipids Are Asymmetrically Oriented in the Bilayer	426

Lipid-Bir Prote	nding Motifs Help Target Peripheral ins to the Membrane	427
Proteins by De	Can Be Removed from Membranes etergents or High-Salt Solutions	427
10.3	Phospholipids, Sphingolipids, and Cholesterol: Synthesis	429
Eatty Ac	ide Synthesis Is Mediated by Savaral	429

Fatty Acids Synthesis Is Mediated by Several Important Enzymes	430
Small Cytosolic Proteins Facilitate Movement of Fatty Acids	430
Incorporation of Fatty Acids into Membrane Lipids Takes Place on Organelle Membranes	431
Flippases Move Phospholipids from One Membrane Leaflet to the Opposite Leaflet	431
Cholesterol Is Synthesized by Enzymes in the Cytosol and ER Membrane	432
Cholesterol and Phospholipids Are Transported Between Organelles by Several Mechanisms	433

11 TRANSMEMBRANE TRANSPORT OF IONS AND SMALL MOLECULES 437

11.1 Overview of Membrane	
Transport	438
Only Small Hydrophobic Molecules Cross Membranes by Simple Diffusion	438
Membrane Proteins Mediate Transport of Most Molecules and All Ions Across Biomembranes	439
Most Molecules and All Ions Across Biomembranes	43

11.2 Uniport Transport of Glucose

and Water 441 Several Features Distinguish Uniport Transport from 441 Simple Diffusion GLUT1 Uniporter Transports Glucose into Most Mammalian Cells 442 The Human Genome Encodes a Family of Sugar-**Transporting GLUT Proteins** 443 Transport Proteins Can Be Enriched Within Artificial Membranes and Cells 443 Osmotic Pressure Causes Water to Move Across Membranes 444 Aquaporins Increase the Water Permeability of Cell 444 Membranes

11.3 ATP-Powered Pumps and the Intracellular Ionic Environment	447
Different Classes of Pumps Exhibit Characteristic Structural and Functional Properties	447
ATP-Powered Ion Pumps Generate and Maintain Ionic Gradients Across Cellular Membranes	448
Muscle Relaxation Depends on Ca ²⁺ ATPases That Pump Ca ²⁺ from the Cytosol into the Sarcoplasmic Reticulum	449
Calmodulin Regulates the Plasma Membrane Ca ²⁺ Pumps That Control Cytosolic Ca ²⁺ Concentrations	451
Na ⁺ /K ⁺ ATPase Maintains the Intracellular Na ⁺ and K ⁺ Concentrations in Animal Cells	452
V-Class H ⁺ ATPases Maintain the Acidity of Lysosomes and Vacuoles	453
Bacterial Permeases Are ABC Proteins That Import a Variety of Nutrients from the Environment	454
The Approximately 50 Mammalian ABC Transporters Play Diverse and Important Roles in Cell and Organ Physiology	455
Certain ABC Proteins "Flip" Phospholipids and Other Lipid-Soluble Substrates from One Membrane Leaflet to the Opposite	
Leaflet	456

11.4	Nongated Ion Channels and the	
	Resting Membrane Potential	458

Selective Movement of Ions Creates a Transmembrane Electric Potential Difference	458
The Membrane Potential in Animal Cells Depends Largely on Potassium Ion Movements Through Open Resting K ⁺ Channels	460
Ion Channels Contain a Selectivity Filter Formed from Conserved Transmembrane Segments	461
Patch Clamps Permit Measurement of Ion Movements Through Single Channels	463
Novel Ion Channels Can Be Characterized by a Combination of Oocyte Expression and Patch Clamping	464
Na $^+$ Entry into Mammalian Cells Has a Negative Change in Free Energy (Δ G)	464

11.5 Cotransport by Symporters and Antiporters

Na ⁺ -Linked Symporters Import Amino Acids and	
Glucose into Animal Cells Against High	

465

Concentration Gradients 466

Bacterial Symporter Structure Reveals the Mechanism of Substrate Binding	467
Na ⁺ -Linked Ca ²⁺ Antiporter Exports Ca ²⁺ from Cardiac Muscle Cells	468
Several Cotransporters Regulate Cytosolic pH	468
A Putative Cation Exchange Protein Plays a Key Role in Evolution of Human Skin Pigmentation	469
Numerous Transport Proteins Enable Plant Vacuoles to Accumulate Metabolites and Ions	469
11.6 Transepithelial Transport	470
Multiple Transport Proteins Are Needed to Move Glucose and Amino Acids Across Epithelia	471
Simple Rehydration Therapy Depends on the Osmotic Gradient Created by Absorption of Glucose and Na ⁺	471
Parietal Cells Acidify the Stomach Contents While Maintaining a Neutral Cytosolic pH	472
CLASSIC EXPERIMENT 11.1 Stumbling Upon Active Transport	477

12 CELLULAR ENERGETICS 479

12.1	First Steps of Glucose and Fatty	
	Acid Catabolism: Glycolysis	400
	and the Citric Acid Cycle	480
During C Conve	Glycolysis (Stage I), Cytosolic Enzymes ert Glucose to Pyruvate	481
The Rate the Co	e of Glycolysis Is Adjusted to Meet ell's Need for ATP	483
Glucose	Is Fermented Under Anaerobic Conditions	485
Under A Efficio ATP (:	erobic Conditions, Mitochondria ently Oxidize Pyruvate and Generate Stages II-IV)	485
Mitocho Struct	ndria Are Dynamic Organelles with Two urally and Functionally Distinct Membranes	485
In Stage Energ	II, Pyruvate Is Oxidized to CO ₂ and High- y Electrons Stored in Reduced Coenzymes	487
Transpor Help Conce	ters in the Inner Mitochondrial Membrane Maintain Appropriate Cytosolic and Matrix entrations of NAD ⁺ and NADH	489
Mitocho ATP	ndrial Oxidation of Fatty Acids Generates	491
Peroxisoı No AT	mal Oxidation of Fatty Acids Generates P	491

12.2The Electron Transport Chain and
Generation of the Proton-Motive
Force493

Stepwise Electron Transport Efficiently Releases the Energy Stored in NADH and FADH ₂	493
Electron Transport in Mitochondria Is Coupled to Proton Pumping	493
Electrons Flow from FADH ₂ and NADH to O ₂ Through Four Multiprotein Complexes	494
Reduction Potentials of Electron Carriers Favor Electron Flow from NADH to O_2	499
Experiments Using Purified Complexes Established the Stoichiometry of Proton Pumping	499
The Q Cycle Increases the Number of Protons Translocated as Electrons Flow Through Complex III	500
The Proton-Motive Force in Mitochondria Is Due Largely to a Voltage Gradient Across the Inner Membrane	502
Toxic By-products of Electron Transport Can Damage Cells	502
12.3 Harnessing the Proton-Motive	
Force for Energy-Requiring	
Processes	503
The Mechanism of ATP Synthesis Is Shared Among Bacteria, Mitochondria, and Chloroplasts	505
ATP Synthase Comprises Two Multiprotein Complexes Termed F_0 and F_1	505
Rotation of the F ₁ γ Subunit, Driven by Proton Movement Through F ₀ , Powers ATP Synthesis	506
ATP-ADP Exchange Across the Inner Mitochondrial Membrane Is Powered by the Proton-Motive Force	509
Rate of Mitochondrial Oxidation Normally Depends	

Rate of Mitochondrial Oxidation Normally Depends on ADP Levels	
Brown-Fat Mitochondria Use the Proton-Motive	
Force to Generate Heat	510

12.4 Photosynthesis and Light-Absorbing Pigments 57

Thylakoid Membranes in Chloroplasts Are the Sites of Photosynthesis in Plants	511
Three of the Four Stages in Photosynthesis Occur Only During Illumination	511
Each Photon of Light Has a Defined Amount of Energy	513
Photosystems Comprise a Reaction Center and Associated Light-Harvesting Complexes	514

511

Photoelectron Transport from Energized Reaction- Center Chlorophyll a Produces a Charge	514
Internal Antenna and Light-Harvesting Complexes Increase the Efficiency of	511
Photosynthesis	515
12.5 Molecular Analysis of Photosystems	517
The Single Photosystem of Purple Bacteria Generates a Proton-Motive Force but No O ₂	517
Linear Electron Flow Through Both Plant Photosystem PSII and PSI, Generates a Proton-Motive Force, O ₂ , and NADPH	ns, 519
An Oxygen-Evolving Complex Is Located on the Luminal Surface of the PSII Reaction Center	520
Cells Use Multiple Mechanisms to Protect Against Damage from Reactive Oxygen Species During Photoelectron Transport	521
Cyclic Electron Flow Through PSI Generates a Proton-Motive Force but No NADPH or O_2	522
Relative Activities of Photosystems I and II Are Regulated	523

12.6	CO ₂ Metabolism During
	Photosynthesis
Rubisco	Fixes CO_2 in the Chloroplast Stroma
Synthesi	s of Sucrose Using Fixed CO ₂ Is Completed

in the Cytosol	525
Light and Rubisco Activase Stimulate CO ₂ Fixation	525
Photorespiration, Which Competes with	
Photosynthesis, Is Reduced in Plants That Fix	
CO_2 by the C ₄ Pathway	527

13 MOVING PROTEINS INTO MEMBRANES AND ORGANELLES 533

13.1Translocation of Secretory ProteinsAcross the ER Membrane535

A Hydrophobic N-Terminal Signal Sequence Targets Nascent Secretory Proteins to the ER	536
Cotranslational Translocation Is Initiated by Two GTP-Hydrolyzing Proteins	537
Passage of Growing Polypeptides Through the Translocon Is Driven by Energy Released During Translation	539

524

525

ATP	Hydrolysis	Powers	Post-trans	ational	
-----	------------	--------	------------	---------	--

Translocation of Some Secretory Proteins in Yeast 540

542

13.2	Insertion of Proteins into the	
	ER Membrane	

Several Topological Classes of Integral Membrane Proteins Are Synthesized on the ER	543
Internal Stop-Transfer and Signal-Anchor Sequences Determine Topology of Single-Pass Proteins	544
Multipass Proteins Have Multiple Internal Topogenic Sequences	546
A Phospholipid Anchor Tethers Some Cell-Surface Proteins to the Membrane	547
The Topology of a Membrane Protein Often Can Be Deduced from Its Sequence	547

13.3	Protein Modifications, Folding,	
	and Quality Control in the ER	549

A Preformed N-Linked Oligosaccharide Is Added to Many Proteins in the Rough ER	550
Oligosaccharide Side Chains May Promote Folding and Stability of Glycoproteins	552
Disulfide Bonds Are Formed and Rearranged by Proteins in the ER Lumen	552
Chaperones and Other ER Proteins Facilitate Folding and Assembly of Proteins	552
Improperly Folded Proteins in the ER Induce Expression of Protein-Folding Catalysts	555
Unassembled or Misfolded Proteins in the ER Are Often Transported to the Cytosol for	
Degradation	556

13.4Sorting of Proteins to Mitochondria
and Chloroplasts557

Amphipathic N-Terminal Signal Sequences Direct Proteins to the Mitochondrial Matrix	558
Mitochondrial Protein Import Requires Outer-Membran Receptors and Translocons in Both Membranes	ne 558
Studies with Chimeric Proteins Demonstrate Important Features of Mitochondrial Import	560
Three Energy Inputs Are Needed to Import Proteins into Mitochondria	561
Multiple Signals and Pathways Target Proteins to Submitochondrial Compartments	561
Targeting of Chloroplast Stromal Proteins Is Similar to Import of Mitochondrial Matrix Proteins	565
Proteins Are Targeted to Thylakoids by Mechanisms Related to Translocation Across the Bacterial	
Inner Membrane	565

13.5 Sorting of Peroxisomal Proteins	567
Cytosolic Receptor Targets Proteins with an SKL Sequence at the C-Terminus into the Peroxisomal Matrix	567
Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways	568
13.6 Transport into and out of the Nucleus	569
Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes	570
Importins Transport Proteins Containing Nuclear- Localization Signals into the Nucleus	571
Exportins Transport Proteins Containing Nuclear-Expo Signals out of the Nucleus	ort 573
Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism	573

14 VESICULAR TRAFFIC, SECRETION, AND ENDOCYTOSIS 579

14.1 Techniques for Studying the Secretory Pathway	580
Transport of a Protein Through the Secretory Pathway Can Be Assayed in Living Cells	582
Yeast Mutants Define Major Stages and Many Components in Vesicular Transport	584
Cell-Free Transport Assays Allow Dissection of Individual Steps in Vesicular Transport	585
14.2 Molecular Mechanisms of Vesicular Traffic	586
Assembly of a Protein Coat Drives Vesicle Formation and Selection of Cargo Molecules	586
A Conserved Set of GTPase Switch Proteins Controls Assembly of Different Vesicle Coats	587
Targeting Sequences on Cargo Proteins Make Specific Molecular Contacts with Coat Proteins	588
Rab GTPases Control Docking of Vesicles on Target Membranes	589
Paired Sets of SNARE Proteins Mediate Fusion of Vesicles with Target Membranes	591
Dissociation of SNARE Complexes After Membrane Fusion Is Driven by ATP Hydrolysis	591

14.3 Early Stages of the Secretory Pathway	592
COPII Vesicles Mediate Transport from the ER to the Golgi	592
COPI Vesicles Mediate Retrograde Transport within the Golgi and from the Golgi to the ER	594
Anterograde Transport Through the Golgi Occurs by Cisternal Maturation	595
A CONTRACT OF A	
14.4 Later Stages of the Secretory Pathway	597
Vesicles Coated with Clathrin and/or Adapter Proteins Mediate Several Transport Steps	598
Dynamin Is Required for Pinching Off of Clathrin Vesicles	599
Mannose 6-Phosphate Residues Target Soluble Proteins to Lysosomes	600
Study of Lysosomal Storage Diseases Revealed Key Components of the Lysosomal Sorting Pathway	602
Protein Aggregation in the <i>trans</i> -Golgi May Function in Sorting Proteins to Regulated Secretory Vesicles	602
Some Proteins Undergo Proteolytic Processing After Leaving the <i>trans</i> -Golgi	603
Several Pathways Sort Membrane Proteins to the Apical or Basolateral Region of Polarized Cells	604
14.5 Receptor-Mediated Endocytosis	606
Cells Take Up Lipids from the Blood in the Form of Large, Well-Defined Lipoprotein Complexes	606
Receptors for Low-Density Lipoprotein and Other Ligands Contain Sorting Signals That Target	608
The Acidic pH of Late Endosomes Causes Most	610
The Endocytic Pathway Delivers Iron to Cells without	010
in Endosomes	611
14.6 Directing Membrane Proteins	
and Cytosolic Materials to the	612
Lysosome	612
Multivesicular Endosomes Segregate Membrane Proteins Destined for the Lysosomal	
Lysosomal Degradation	612
Retroviruses Bud from the Plasma Membrane by a Proce Similar to Formation of Multivesicular Endosomes	614
CLASSIC EXPERIMENT 14.1 Following a Protein Out of the Cell	621

15CELL SIGNALING I: SIGNAL
TRANSDUCTION AND SHORT-TERM
CELLULAR RESPONSES623

15.1 From Extracellular Signal to Cellula Response	r 625
Signaling Cells Produce and Release Signaling Molecules	625
Signaling Molecules Can Act Locally or at a Distance	625
Binding of Signaling Molecules Activates Receptors on Target Cells	626
15.2 Studying Cell-Surface Receptors	627
Receptor Proteins Bind Ligands Specifically	627
The Dissociation Constant Is a Measure of the Affinity of a Receptor for Its Ligand	628
Binding Assays Are Used to Detect Receptors and Determine Their Affinities for Ligands	628
Maximal Cellular Response to a Signaling Molecule Usually Does Not Require Activation of All Receptors	629
Sensitivity of a Cell to External Signals Is Determined by the Number of Surface Receptors and Their Affinity for Ligand	631
Receptors Can Be Purified by Affinity Techniques	631
Receptors Are Frequently Expressed from Cloned Genes	631

15.3	Highly Conserved Components	
	of Intracellular Signal-Transduction	1
	Pathwavs	632

GTP-Binding Proteins Are Frequently Used As On/Off Switches	633
Protein Kinases and Phosphatases are Employed in Virtually All Signaling Pathways	634
Second Messengers Carry and Amplify Signals from Many Receptors	634
15.4 General Elements of G Protein-	
Coupled Receptor Systems	635
G Protein-Coupled Receptors Are a Large and Diverse Family with a Common Structure and Function	635
 G Protein-Coupled Receptors Are a Large and Diverse Family with a Common Structure and Function G Protein-Coupled Receptors Activate Exchange of GTP for GDP on the α Subunit of a Trimeric G Protein 	635 635

CONTENTS • XXVII

15.5 G Protein-Coupled Receptors That Regulate Ion Channels

Acetylcholine Receptors in the Heart Muscle Activate a G Protein That Opens K ⁺ Channels	641
Light Activates $G_{\alpha t}$ -Coupled Rhodopsins	641
Activation of Rhodopsin Induces Closing of cGMP-Gated Cation Channels	642
Rod Cells Adapt to Varying Levels of Ambient Light Because of Opsin Phosphorylation and Binding	
of Arrestin	644

640

15.6	G Protein-Coupled Receptors That	
	Activate or Inhibit Adenylyl Cyclase	646
Adenylyl by Dif	Cyclase Is Stimulated and Inhibited ferent Receptor-Ligand Complexes	646

, , , , , , , , , , , , , , , , , , , ,	
Structural Studies Established How $G_{\alpha s}$ ·GTP Binds to and Activates Adenylyl Cyclase	646
cAMP Activates Protein Kinase A by Releasing Catalytic Subunits	647
Glycogen Metabolism Is Regulated by Hormone-Induced Activation of Protein Kinase A	648
cAMP-Mediated Activation of Protein Kinase A Produces Diverse Responses in Different Cell Types	649
Signal Amplification Commonly Occurs in Many Signaling Pathways	650
Several Mechanisms Down-Regulate Signaling from G Protein-Coupled Receptors	651

Anchoring Proteins Localize Effects of cAMP to Specific Regions of the Cell 652

15.7G Protein-Coupled Receptors That
Activate Phospholipase C653

Phosphorylated Derivatives of Inositol Are Important Second Messengers	654
Calcium Ion Release from the Endoplasmic Reticulum is Triggered by IP ₃	654
The Ca ²⁺ /Calmodulin Complex Mediates Many Cellular Responses to External Signals	655
Diacylglycerol (DAG) Activates Protein Kinase C, Which Regulates Many Other Proteins	656
Signal-Induced Relaxation of Vascular Smooth Muscle Is Mediated by cGMP-Activated Protein Kinase G	656

15.8 Integrating Responses of Cells to Environmental Influences 657

Integration of Multiple Second Messengers Regulates Glycogenolysis 657 Insulin and Glucagon Work Together to Maintain a Stable Blood Glucose Level

658

CLASSIC EXPERIMENT 15.1 The Infancy of Signal Transduction—GTP Stimulation of cAMP Synthesis 663

16 CELL-SIGNALING II: SIGNALING PATHWAYS THAT CONTROL GENE ACTIVITY 665

16.1	TGFβ Receptors and the Direct Activation of Smads	668
A TGFβ of an	Signaling Molecule Is Formed by Cleavage Inactive Precursor	668
Radioact Recep	tive Tagging Was Used to Identify TGF β otors	669
Activate Trans	d TGFβ Receptors Phosphorylate Smad cription Factors	670
Negative Signa	e Feedback Loops Regulate TGFβ/Smad ling	671
Loss of T in Cai	GFβ Signaling Plays a Key Role	671

16.2 Cytokine Receptors and the **JAK/STAT Pathway** 672 Cytokines Influence Development of Many Cell Types 672 Cytokine Receptors Have Similar Structures and Activate Similar Signaling Pathways 673 JAK Kinases Activate STAT Transcription Factors 674 **Complementation Genetics Revealed That** JAK and STAT Proteins Transduce Cytokine Signals 677 Signaling from Cytokine Receptors Is Regulated by Negative Signals 678 Mutant Erythropoietin Receptor That Cannot Be Turned Off Leads to Increased Numbers of **Erythrocytes** 679

16.3Receptor Tyrosine Kinases679Ligand Binding Leads to Phosphorylation and
Activation of Intrinsic Kinase in RTKs680Overexpression of HER2, a Receptor
Tyrosine Kinase, Occurs in Some Breast
Cancers680

Conserved Domains Are Important for Binding Signal- Transduction Proteins to Activated Receptors Down-regulation of RTK Signaling Occurs by	682 683
16.4 Active tion of Dee and MAD Kinese	
Pathways	684
Ras, a GTPase Switch Protein, Cycles Between Active and Inactive States	685
Receptor Tyrosine Kinases Are Linked to Ras by Adapter Proteins	685
Genetic Studies in <i>Drosophila</i> Identified Key Signal-Transducing Proteins in the Ras/MAP Kinase Pathway	685
Binding of Sos Protein to Inactive Ras Causes a Conformational Change That Activates Ras	687
Signals Pass from Activated Ras to a Cascade of Protein Kinases	688
MAP Kinase Regulates the Activity of Many Transcription Factors Controlling Early-Response Genes	690
G Protein-Coupled Receptors Transmit Signals to MAP Kinase in Yeast Mating Pathways	691
Scaffold Proteins Separate Multiple MAP Kinase Pathways in Eukaryotic Cells	692
The Ras/MAP Kinase Pathway Can Induce Diverse Cellular Responses	693
Realized and the first of the second second	
16.5 Phosphoinositides as Signal	

694 Transducers Phospholipase C_v Is Activated by Some RTKs and **Cytokine Receptors** 694 Recruitment of PI-3 Kinase to Hormone-Stimulated Receptors Leads to Synthesis of Phosphorylated **Phosphatidylinositols** 694 Accumulation of PI 3-Phosphates in the Plasma Membrane Leads to Activation of Several Kinases 695 Activated Protein Kinase B Induces Many **Cellular Responses** 696 The PI-3 Kinase Pathway Is Negatively Regulated by PTEN Phosphatase 697 16.6 **Activation of Gene Transcription** by Seven-Spanning Cell-Surface 697 Receptors CREB Links cAMP and Protein Kinase A to Activation 698 of Gene Transcription GPCR-Bound Arrestin Activates Several Kinase Cascades 698

Wnt Signals Trigger Release of a Transcription
Factor from Cytosolic Protein Complex699

Hedgehog Signaling Relieves Repression of Target Genes 700

16.7Pathways That Involve Signal-InducedProtein Cleavage703

Degradation of an Inhibitor Protein Activates the NF-κB Transcription Factors	703
Ligand-Activated Notch Is Cleaved Twice, Releasing a Transcription Factor	705
Matrix Metalloproteases Catalyze Cleavage of Many Signaling Proteins from the Cell Surface	706
Inappropriate Cleavage of Amyloid Precursor Protein Can Lead to Alzheimer's Disease	706
Regulated Intramembrane Proteolysis of SREBP Releases a Transcription Factor That Acts to Maintain Phospholipid and Cholesterol Levels	707

17 CELL ORGANIZATION AND MOVEMENT I: MICROFILAMENTS 713

17.1	Microfilaments and Actin	
	Structures	716
Actin Is	Ancient, Abundant, and Highly Conserved	717

G-Actin Monomers Assemble into Long, Helical	
F-Actin Polymers	717
F-Actin Has Structural and Functional Polarity	718

17.2 Dynamics of Actin Filaments 718

Actin Polymerization in Vitro Proceeds in Three Steps719Actin Filaments Grow Faster at (+) Ends Than at
(-) Ends720Actin Filament Treadmilling Is Accelerated by
Profilin and Cofilin721Thymosin-β4 Provides a Reservoir of Actin for
Polymerization722Capping Proteins Block Assembly and Disassembly
at Actin Filament Ends722

17.3 Mechanisms of Actin Filament Assembly

Formins Assemble Unbranched Filaments	723
The Arp2/3 Complex Nucleates Branched Filament Assembly	724
Intracellular Movements Can Be Powered by Actin Polymerization	726

CONTENTS • XXIX

Toxins That Perturb the Pool of Actin Monomers	
Are Useful for Studying Actin Dynamics	

17.4 Organization of Actin-Based Cellu Structures	lar 728
Cross-Linking Proteins Organize Actin Filaments into Bundles or Networks	728
Adaptor Proteins Link Actin Filaments to Membranes	728
A rest of the second state of the second st	
17.5 Myosins: Actin-Based Motor Proteins	731
Myosins Have Head, Neck, and Tail Domains with Distinct Functions	732
Myosins Make Up a Large Family of Mechanochemical Motor Proteins	733
Conformational Changes in the Myosin Head Couple ATP Hydrolysis to Movement	736
Myosin Heads Take Discrete Steps Along Actin Filaments	736
Myosin V Walks Hand Over Hand Down an Actin Filament	737
at the second se	
17.6 Myosin-Powered Movements	738
Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past One Another During Contraction	738
Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins	740
Contraction of Skeletal Muscle Is Regulated by Ca ²⁺ and Actin-Binding Proteins	740
Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells	741
Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells	742
Myosin-V-Bound Vesicles Are Carried Along Actin Filaments	743
17.7 Cell Migration: Signaling and	
Chemotaxis	745
Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling	745
The Small GTP-Binding Proteins Cdc42, Rac, and Rho Control Actin Organization	747
Cell Migration Involves the Coordinate Regulation of Cdc42, Rac, and Rho	748
Migrating Cells Are Steered by Chemotactic Molecules	750

Chemotactic Gradients Induce Altered Phosphoinosit Levels Between the Front and Back of a Cell	ide 750
CLASSIC EXPERIMENT 17.1 Looking at Muscle Contraction	755
18 CELL ORGANIZATION AND MOVEMENT II: MICROTUBULES AND INTERMEDIATE FILAMENTS	757
	151
18.1 Microtubule Structure and Organization	758
Microtubule Walls Are Polarized Structures Built from $\alpha\beta$ -Tubulin Dimers Microtubules Are Assembled from MTOCs to	758
Generate Diverse Organizations	760
18.2 Microtubule Dynamics	762
Microtubules Are Dynamic Structures Due to Kinetic Differences at Their Ends	763
Individual Microtubules Exhibit Dynamic Instability	763
Localized Assembly and "Search-and-Capture" Help Organize Microtubules	766
Drugs Affecting Tubulin Polymerization Are Useful Experimentally and to Treat Diseases	766
18.3 Regulation of Microtubule Structu and Dynamics	ıre 767
Microtubules Are Stabilized by Side- and End-Binding Proteins	767
Microtubules Are Disassembled by End Binding and Severing Proteins	768
18.4 Kinesins and Dyneins: Microtubul Based Motor Proteins	e- 769
Organelles in Axons Are Transported Along Microtubules in Both Directions	769
Kinesin-1 Powers Anterograde Transport of Vesicles Down Axons Toward the (+) End of Microtubules	770
Kinesins Form a Large Protein Family with Diverse Functions	771
Kinesin-1 Is a Highly Processive Motor	772
Dynein Motors Transport Organelles Toward the (-) End of Microtubules	774
Kinesins and Dyneins Cooperate in the Transport of Organelles Throughout the Cell	775

18.5 Cilia and Flagella: Microtubule- Based Surface Structures	777
Eukaryotic Cilia and Flagella Contain Long Doublet Microtubules Bridged by Dynein Motors	777
Ciliary and Flagellar Beating Are Produced by Controlled Sliding of Outer Doublet Microtubules	778
Intraflagellar Transport Moves Material Up and Down Cilia and Flagella	779
Defects in Intraflagellar Transport Cause Disease by Affecting Sensory Primary Cilia	780
18.6 Mitosis	781
Mitaris Can Do Divided into Six Phones	707
Contractions Durilizate Factor in the Call Cusie in	/82
Preparation for Mitosis	783
The Mitotic Spindle Contains Three Classes of	
Microtubules	784
Microtubule Dynamics Increases Dramatically	has
in Mitosis	784
Microtubules Treadmill During Mitosis	785
The Kinetochore Captures and Helps Transport Chromosomes	786
Duplicated Chromosomes Are Aligned by Motors and Treadmilling Microtubules	788
Anaphase A Moves Chromosomes to Poles by Microtubule Shortening	789
Anaphase B Separates Poles by the Combined Action of Kinesins and Dynein	789
Additional Mechanisms Contribute to Spindle Formation	789
Cytokinesis Splits the Duplicated Cell in Two	789
Plant Cells Reorganize Their Microtubules and Build a New Cell Wall in Mitosis	790
18.7 Intermediate Filaments	791
Intermediate Filaments Are Assembled from Subunit Dimers	792
Intermediate Filaments Proteins Are Expressed in a Tissue-Specific Manner	792
Intermediate Filaments Are Dynamic	795
Defects in Lamins and Keratins Cause Many Diseases	795
18.8 Coordination and Cooperation	
between Cytoskeletal Elements	796
Intermediate Filament-Associated Proteins Contribute to Cellular Organization	796

96
97

19 INTEGRATING CELLS INTO TISSUES 801

19.1 Cell-Cell and Cell-Matrix Adhesion: An Overview 803 Cell-Adhesion Molecules Bind to One Another and to Intracellular Proteins 803 The Extracellular Matrix Participates in Adhesion, Signaling, and Other Functions 805 The Evolution of Multifaceted Adhesion Molecules Enabled the Evolution of Diverse Animal Tissues 807 **Cell-Cell and Cell-ECM Junctions** 19.2 and Their Adhesion Molecules 808 Epithelial Cells Have Distinct Apical, Lateral, and **Basal Surfaces** 808 Three Types of Junctions Mediate Many Cell-Cell 809 and Cell-ECM Interactions Cadherins Mediate Cell-Cell Adhesions in Adherens Junctions and Desmosomes 810 Tight Junctions Seal Off Body Cavities and Restrict **Diffusion of Membrane Components** 814 Integrins Mediate Cell-ECM Adhesions in Epithelial Cells 816 Gap Junctions Composed of Connexins Allow Small Molecules to Pass Directly Between Adjacent Cells 817 The Extracellular Matrix I: 19.3 The Basal Lamina 820 The Basal Lamina Provides a Foundation for Assembly of Cells into Tissues 820 Laminin, a Multiadhesive Matrix Protein, Helps Cross-link Components of the Basal Lamina 821 Sheet-Forming Type IV Collagen Is a Major Structural

Component of the Basal Lamina 821 Perlecan, a Proteoglycan, Cross-links Components of the Basal Lamina and Cell-Surface Receptors 824

The Extracellular Matrix II: 19.4 **Connective and Other Tissues** 825

Fibrillar Collagens Are the Major Fibrous Proteins in the ECM of Connective Tissues

> CONTENTS xxxi

Fibrillar Collagen Is Secreted and Assembled into Fibrils Outside of the Cell	826
Type I and II Collagens Associate with Nonfibrillar Collagens to Form Diverse Structures	826
Proteoglycans and Their Constituent GAGs Play Diverse Roles in the ECM	827
Hyaluronan Resists Compression, Facilitates Cell Migratio and Gives Cartilage Its Gel-like Properties	n, 829
Fibronectins Interconnect Cells and Matrix, Influencing Cell Shape, Differentiation, and Movement	830
19.5 Adhesive Interactions in Motile and Nonmotile Cells	833
Integrins Relay Signals Between Cells and Their Three-Dimensional Environment	833
Regulation of Integrin-Mediated Adhesion and Signaling Controls Cell Movement	834

Connections Between the ECM and Cytoskeleton Are Defective in Muscular Dystrophy	835
IgCAMs Mediate Cell-Cell Adhesion in Neuronal and Other Tissues	836
Leukocyte Movement into Tissues Is Orchestrated by a Precisely Timed Sequence of Adhesive Interactions	837
19.6 Plant Tissues	839
The Plant Cell Wall Is a Laminate of Cellulose Fibrils in a Matrix of Glycoproteins	840
Loosening of the Cell Wall Permits Plant Cell Growth	840
Plasmodesmata Directly Connect the Cytosols of Adjacent Cells in Higher Plants	840
Only a Few Adhesive Molecules Have Been Identified in Plants	841

Part IV Cell Growth and Development

20 REGULATING THE EUKARYOTIC	947
	047
20.1 Overview of the Cell Cycle and Its Control	849
The Cell Cycle Is an Ordered Series of Events Leading to Cell Replication	849
Regulated Protein Phosphorylation and Degradation Control Passage Through the Cell Cycle	849
Diverse Experimental Systems Have Been Used to Identify and Isolate Cell-Cycle Control Proteins	s 851
20.2 Control of Mitosis by Cyclins a MPF Activity	nd 853
Maturation-Promoting Factor (MPF) Stimulates Meiotic Maturation in Oocytes and Mitosis in Somatic Cells	854
Mitotic Cyclin Was First Identified in Early Sea Urchin Embryos	856
Cyclin B Levels and Kinase Activity of Mitosis- Promoting Factor (MPF) Change Together in Cycling <i>Xenopus</i> Egg Extracts	856
Anaphase-Promoting Complex (APC/C) Controls Degradation of Mitotic Cyclins and Exit from Mitosis	858

20.3 Cyclin-Dependent Kinase Regulat During Mitosis	ion 859
MPF Components Are Conserved Between Lower and Higher Eukaryotes	860
Phosphorylation of the CDK Subunit Regulates the Kinase Activity of MPF	861
Conformational Changes Induced by Cyclin Binding and Phosphorylation Increase MPF Activity	862
20.4 Molecular Mechanisms for Regulating Mitotic Events	864
Phosphorylation of Nuclear Lamins and Other Proteins Promotes Early Mitotic Events	864
Unlinking of Sister Chromatids Initiates Anaphase	867
Chromosome Decondensation and Reassembly of the Nuclear Envelope Depend on Dephosphorylation of MPF Substrates	870
20.5 Cyclin-CDK and Ubiquitin-Protein Ligase Control of S phase	872
A Cyclin-Dependent Kinase (CDK) Is Critical for S-Phase Entry in <i>S. cerevisiae</i>	872
Three G ₁ Cyclins Associate with <i>S. cerevisiae</i> CDK to Form S-Phase-Promoting Factors	874

Degradation of the S-Phase Inhibitor Triggers DNA Replication	876
Multiple Cyclins Regulate the Kinase Activity of S. cerevisiae CDK During Different Cell-Cycle Phases	877
Replication at Each Origin Is Initiated Only Once During the Cell Cycle	877
20.6 Cell-Cycle Control in Mammalian Cells	879

Mammalian Restriction Point Is Analogous to START in Yeast Cells	880
Multiple CDKs and Cyclins Regulate Passage of Mammalian Cells Through the Cell Cycle	881
Regulated Expression of Two Classes of Genes Returns G_0 Mammalian Cells to the Cell Cycle	881
Passage Through the Restriction Point Depends on Phosphorylation of the Tumor-Suppressor Rb Protein	882
Cyclin A Is Required for DNA Synthesis and CDK1 for Entry into Mitosis	883
Two Types of Cyclin-CDK Inhibitors Contribute to Cell-Cycle Control in Mammals	883

20.7Checkpoints in Cell-Cycle
Regulation884The Presence of Unreplicated DNA Prevents Entry
into Mitosis888Improper Assembly of the Mitotic Spindle Prevents
the Initiation of Anaphase888Proper Segregation of Daughter Chromosomes Is
Monitored by the Mitotic Exit Network889Cell-Cycle Arrest of Cells with Damaged DNA Depends
on Tumor Suppressors891

20,8	Meiosis:	Α	Special	Туре	of	Cell
	Division					

Key Features Distinguish Meiosis from Mitosis	892
Repression of G ₁ Cyclins and a Meiosis-Specific Protein Kinase Promote Premeiotic S Phase	895
Recombination and a Meiosis-Specific Cohesin Subunit Are Necessary for the Specialized Chromosome Segregation in Meiosis I	895
Special Properties of Rec8 Regulate Its Cleavage in Meiosis I and II	896
The Monopolin Complex Co-orients Sister Kinetochores in Meiosis I	898
Tension on Spindle Microtubules Contributes to Proper Spindle Attachment	898

CLASSIC EXPERIMENT 20.1 Cell Biology Emerg	jing
from the Sea: The Discovery of Cyclins	903

21 CELL BIRTH, LINEAGE, AND DEATH

0	0	-
ч		
-	v	-

21.1 The Birth of Cells: Stem Cells, Niches, and Lineage	906
tem Cells Give Rise to Both Stem Cells and Differentiating Cells	906
Cell Fates Are Progressively Restricted During Development	907
he Complete Cell Lineage of C. elegans Is Known	908
leterochronic Mutants Provide Clues About Control of Cell Lineage	909
Cultured Embryonic Stem Cells Can Differentiate into Various Cell Types	911
Adult Stem Cells for Different Animal Tissues Occupy Sustaining Niches	912
Aeristems Are Niches for Stem Cells in Postnatal	020
Plants	920

21.2 Cell-Type Specification in Yeast 921

Mating-Type Transcription Factors Specify Cell Types	922
MCM1 and α_1 -MCM1 Complexes Activate Gene Transcription	923
α_2 -MCM1 and α_2 -a1 Complexes Repress Transcription	923
Pheromones Induce Mating of $\boldsymbol{\alpha}$ and a Cells to Generate a Third Cell Type	923

21.3 Specification and Differentiation of Muscle 924

Embryonic Somites Give Rise to Myoblasts	925
Myogenic Genes Were First Identified in Studies with Cultured Fibroblasts	925
Two Classes of Regulatory Factors Act in Concert to Guide Production of Muscle Cells	926
Differentiation of Myoblasts Is Under Positive and Negative Control	927
Cell–Cell Signals Are Crucial for Determination and Migration of Myoblasts 9	928
bHLH Regulatory Proteins Function in Creation of Other Tissues 9	929

21.4 Regulation of Asymmetric Cell Division

892

930

Yeast Mating-Type Switching Depends upon Asymmetric Cell Division

Proteins That Regulate Asymmetry Are Localized at

Opposite Ends of Dividing Neuroblasts in Drosophila 931

21.5 Cell Death and Its Regulation	936
Programmed Cell Death Occurs Through Apoptosis	937
Neurotrophins Promote Survival of Neurons	937
A Cascade of Caspase Proteins Functions in One Apoptotic Pathway	938
Pro-Apoptotic Regulators Permit Caspase Activation in the Absence of Trophic Factors	941
Some Trophic Factors Induce Inactivation of a Pro-Apoptotic Regulator	942
Tumor Necrosis Factor and Related Death Signals Promote Cell Murder by Activating Caspases	943

22 THE MOLECULAR CELL BIOLOGY OF DEVELOPMENT 949

22.1 Highlights of Development	950
Development Progresses from Egg and Sperm to an Early Embryo	950
As the Embryo Develops, Cell Layers Become Tissues and Organs	951
Genes That Regulate Development Are at the Heart of Evolution	952
22.2 Gametogenesis and Fertilization	953
Germ-line Cells Are All That We Inherit	953
Fertilization Unifies the Genome	955
Genomic Imprinting Controls Gene Activation According to Maternal or Paternal Chromosome Origin	958
Too Much of a Good Thing: The X Chromosome Is Regulated by Dosage Compensation	958
22.3 Cell Diversity and Patterning in Early Vertebrate Embryos	959
Cleavage Leads to the First Differentiation Events	960
The Genomes of Most Somatic Cells Are Complete	961
Gastrulation Creates Multiple Tissue Layers, Which Become Polarized	961
Signal Gradients May Induce Different Cell Fates	963
Signal Antagonists Influence Cell Fates and Tissue Induction	965
A Cascade of Signals Distinguishes Left from Right	966

22.4 Control of Body Segmentation: Themes and Variations in Insects and Vertebrates 969

Early Drosophila Development Is an Exercise in Speed	970
Transcriptional Control Specifies the Embryo's Anterior and Posterior	971
Translation Inhibitors Reinforce Anterior-Posterior Patterning	973
Insect Segmentation Is Controlled by a Cascade of Transcription Factors	974
Vertebrate Segmentation Is Controlled by Cyclical Expression of Regulatory Genes	977
Differences Between Segments Are Controlled by Hox Genes	978
Hox-Gene Expression Is Maintained by a Variety of Mechanisms	982
Flower Development Requires Spatially Regulated Production of Transcription Factors	983
22.5 Cell-Type Specification in Early Neural Development	985
Neurulation Begins Formation of the Brain and Spinal Cord	986
Signal Gradients and Transcription Factors Specify Cell Types in the Neural Tube and Somites	987
Most Neurons in the Brain Arise in the Innermost Neural Tube and Migrate Outward	988
Lateral Inhibition Mediated by Notch Signaling Causes Early Neural Cells to Become Different	988
22.6 Growth and Patterning of Limbs	990
Hox Genes Determine the Right Places for Limbs to Grow	990
Limb Development Depends on Integration of Multiple Extracellular Signal Gradients	991
Hox Genes Also Control Fine Patterning of Limb Structures	992
So Far, So Good	994
CLASSIC EXPERIMENT 22.1 Using Lethal	000
mutations to study Development	222

23 NERVE CELLS 1001

23.1Neurons and Glia: BuildingBlocks of the Nervous System1002

Information Flows Through Neurons from Dendrites to Axons 1003

Information Moves as Pulses of Ion Flow Called	
Action Potentials	1003
Information Flows Between Neurons via	1005
The Nervous System Uses Signaling Circuits	1005
Composed of Multiple Neurons	1005

23.2Voltage-Gated Ion Channels
and the Propagation of Action
Potentials in Nerve Cells1006

The Magnitude of the Action Potential Is Close	
to E _{Na}	1006
Sequential Opening and Closing of Voltage- Gated Na ⁺ and K ⁺ Channels Generate Action Potentials	1007
Action Potentials Are Propagated Unidirectionally Without Diminution	1009
Nerve Cells Can Conduct Many Action Potentials in the Absence of ATP	1009
All Voltage-Gated Ion Channels Have Similar Structures	1009
Voltage-Sensing S4 α Helices Move in Response to Membrane Depolarization	1011
Movement of the Channel-Inactivating Segment into the Open Pore Blocks Ion Flow	1013
Myelination Increases the Velocity of Impulse Conduction	1013
Action Potentials "Jump" from Node to Node in Myelinated Axons	1013
Glia Produce Myelin Sheaths and Synapses	1014

23.3 Communication at Synapses 1018

Formation of Synapses Requires Assembly of Presynaptic and Postsynaptic Structures	1018
Neurotransmitters Are Transported into Synaptic Vesicles by H ⁺ -Linked Antiport Proteins	1019
Synaptic Vesicles Loaded with Neurotransmitter Are Localized near the Plasma Membrane	1020
Influx of Ca ²⁺ Triggers Release of Neurotransmitters	1022
A Calcium-Binding Protein Regulates Fusion of Synaptic Vesicles with the Plasma Membrane	1022
Signaling at Synapses Is Terminated by Degradation or Reuptake of Neurotransmitters	1023
Fly Mutants Lacking Dynamin Cannot Recycle Synaptic Vesicles	1023
Opening of Acetylcholine-Gated Cation Channels Leads to Muscle Contraction	1023
All Five Subunits in the Nicotinic Acetylcholine Receptor Contribute to the Ion Channel	1024

Nerve Cells Make an All-or-None Decision to	
Generate an Action Potential	1025
Gap Junctions Also Allow Neurons to Communicate	1025

23.4 Sensational Cells: Seeing, Feeling, Hearing, Tasting, and Smelling 1027

The Eye Features Light-Sensitive Nerve Cells	1027
Eyes Reflect Evolutionary History	1028
Integrated Information from Multiple Ganglion Cells Forms Images of the World	1029
Mechanosensory Cells Detect Pain, Heat, Cold, Touch, and Pressure	1031
Inner Ear Cells Detect Sound and Motion	1032
Five Primary Tastes Are Sensed by Subsets of Cells in Each Taste Bud	1034
A Plethora of Receptors Detect Odors	1036

23.5 The Path to Success: Controlling Axon Growth and Targeting 1040 The Growth Cone Is a Motorized Sensory **Guidance Structure** 1040 The Retinotectal Map Revealed an Ordered System of Axon Connections 1042 There Are Four Families of Axon Guidance Molecules 1043 Developmental Regulators Also Guide Axons 1046 Axon Guidance Molecules Cause the Growth Cone to Turn 1047

24 IMMUNOLOGY 1055

24.1	Overview of Host Defenses	1057
Pathogei Route	ns Enter the Body Through Different s and Replicate at Different Sites	1057
Leukocyt Take l	es Circulate Throughout the Body and Jp Residence in Tissues and Lymph Nodes	1057
Mechani a First	cal and Chemical Boundaries Form Layer of Defense Against Pathogens	1059
Innate In of Dei Barrie	nmunity Provides a Second Line fense After Mechanical and Chemical rs Are Crossed	1059
Inflamma Encom	ation Is a Complex Response to Injury That ppasses Both Innate and Adaptive Immunity	1061
Adaptive Exhibi	Immunity, the Third Line of Defense, ts Specificity	1062

Immunoglobulins: Structure 24.2 and Function 1063 Immunoglobulins Have a Conserved Structure Consisting of Heavy and Light Chains 1063 Multiple Immunoglobulin Isotypes Exist, Each with Different Functions 1065 Each B Cell Produces a Unique, Clonally Distributed Immunoglobulin 1066 Immunoglobulin Domains Have a Characteristic Fold Composed of Two β Sheets Stabilized by a Disulfide Bond 1067 The Three-Dimensional Structure of Antibody Molecules Accounts for Their Exquisite Specificity 1067 An Immunoglobulin's Constant Region Determines Its **Functional Properties** 1068

24.3 Generation of Antibody Diversity and B-Cell Development 1069

A Functional Light-Chain Gene Requires Assembly of V and J Gene Segments	1069
Rearrangement of the Heavy-Chain Locus Involves V, D, and J Gene Segments	1071
Somatic Hypermutation Allows the Generation and Selection of Antibodies with Improved Affinities	1073
B-Cell Development Requires Input from a Pre-B Cell Receptor	1073
During an Adaptive Response, B Cells Switch from Making Membrane-Bound Ig to Making Secreted Ig	1074
B Cells Can Switch the Isotype of Immunoglobulin They Make	1075

24.4 The MHC and Antigen Presentation

The MHC Determines the Ability of Two Unrelated Individuals of the Same Species to Accept or Reject Grafts	1077
The Killing Activity of Cytotoxic T Cells Is Antigen Specific and MHC Restricted	1078
T Cells with Different Functional Properties Are Guided by Two Distinct Classes of MHC Molecules	1079
MHC Molecules Bind Peptide Antigens and Interact with the T-Cell Receptor	1081
Antigen Presentation Is the Process by Which Protein Fragments Are Complexed with MHC Products and Posted to the Cell Surface	1082
Class I MHC Pathway Presents Cytosolic Antigens	1082
Class II MHC Pathway Presents Antigens Delivered to the Endocytic Pathway	1084

1076

24.5 T Cells, T-Cell Receptors, and T-Cell Development	1088
The Structure of the T-Cell Receptor Resembles the F(ab) Portion of an Immunoglobulin	1088
TCR Genes Are Rearranged in a Manner Similar to Immunoglobulin Genes	1088
T-Cell Receptors Are Very Diverse with Many of Their Variable Residues Encoded in the Junctions between V, D, and J Gene Segments	1089
Signaling via Antigen-Specific Receptors Triggers Proliferation and Differentiation of T and B Cells	1091
T Cells Capable of Recognizing MHC Molecules Develop Through a Process of Positive and Negative Selection	1091
T Cells Require Two Types of Signal for Full Activation	1094
Cytotoxic T Cells Carry the CD8 Co-receptor and Are Specialized for Killing	1095
T Cells Produce an Array of Cytokines That Provide Signals to Other Immune Cells	1095
CD4 T Cells Are Divided into Three Major Classes Based on Their Cytokine Production and Expression of Surface Markers	1096
Leukocytes Move in Response to Chemotactic Cues Provided by Chemokines	1096
24.6 Collaboration of Immune-System Cells in the Adaptive Response	1097
Toll-Like Receptors Perceive a Variety of Pathogen-Derived Macromolecular Patterns	1097
Engagement of Toll-Like Receptors Leads to Activation of Antigen-Presenting Cells	1099
Production of High-Affinity Antibodies Requires Collaboration Between B and T Cells	1099
Vaccines Elicit Protective Immunity Against a Variety of Pathogens	1101
CLASSIC EXPERIMENT 24.1 Two Genes Become One Somatic Rearrangement of Immunoglobulin Genes	: 1105

10)	1	1
	10	10	107

25.1 Tumor Cells and the Onset of Cancer

Metastatic Tumor Cells Are Invasive and Can Spread	1109
Cancers Usually Originate in Proliferating Cells	1110
Cancer Stem Cells Can Be a Minority Population	1111
Tumor Growth Requires Formation of New Blood Vessels	1111

Specific Mutations Transform Cultured Cells into Tumor Cells	1113
A Multi-hit Model of Cancer Induction Is Supported by Several Lines of Evidence	1114
Successive Oncogenic Mutations Can Be Traced in Colon Cancers	1116
DNA Microarray Analysis of Expression Patterns Can Reveal Subtle Differences Between Tumor Cells	1116

1119

25.2 The Genetic Basis of Cancer

Gain-of-Function Mutations Convert Proto-oncogenes into Oncogenes 1119 Cancer-Causing Viruses Contain Oncogenes or Activate Cellular Proto-oncogenes 1121 Loss-of-Function Mutations in Tumor-Suppressor Genes Are Oncogenic 1123 Inherited Mutations in Tumor-Suppressor Genes Increase Cancer Risk 1123 Aberrations in Signaling Pathways That Control Development Are Associated with Many Cancers 1124 25.3 Oncogenic Mutations in Growth-**Promoting Proteins** 1127

Oncogenic Receptors Can Promote Proliferation in the Absence of External Growth Factors	1127
Viral Activators of Growth-Factor Receptors Act as Oncoproteins	1128
Many Oncogenes Encode Constitutively Active Signal-Transduction Proteins	1129
Inappropriate Production of Nuclear Transcription Factors Can Induce Transformation	1130
Molecular Cell Biology Is Changing How Cancer Is Treated	1132

25.4 Mutations Causing Loss of Growth-Inhibiting and Cell-Cycle Controls

Mutations That Promote Unregulated Passage from G1 to S Phase Are Oncogenic1134Loss-of-Function Mutations Affecting Chromatin- Remodeling Proteins Contribute to Tumors1139Loss of p53 Abolishes the DNA-Damage Checkpoint1139Apoptotic Genes Can Function as Proto-oncogenes or Tumor-Suppressor Genes1137Failure of Cell-Cycle Checkpoints Often Leads to Anounloidu in Tumor Cells1130		
Loss-of-Function Mutations Affecting Chromatin- Remodeling Proteins Contribute to Tumors1139Loss of p53 Abolishes the DNA-Damage Checkpoint1130Apoptotic Genes Can Function as Proto-oncogenes or Tumor-Suppressor Genes1137Failure of Cell-Cycle Checkpoints Often Leads to Annunlaidu in Tumor Cells1130	Mutations That Promote Unregulated Passage from G_1 to S Phase Are Oncogenic	1134
Loss of p53 Abolishes the DNA-Damage Checkpoint1136Apoptotic Genes Can Function as Proto-oncogenes or Tumor-Suppressor Genes1137Failure of Cell-Cycle Checkpoints Often Leads to Annunloidu in Tumor Cells1137	Loss-of-Function Mutations Affecting Chromatin- Remodeling Proteins Contribute to Tumors	1135
Apoptotic Genes Can Function as Proto-oncogenes or Tumor-Suppressor Genes 1137 Failure of Cell-Cycle Checkpoints Often Leads to 1127	Loss of p53 Abolishes the DNA-Damage Checkpoint	1136
Failure of Cell-Cycle Checkpoints Often Leads to	Apoptotic Genes Can Function as Proto-oncogenes or Tumor-Suppressor Genes	1137
Aneuploidy in Tumor Cens 1138	Failure of Cell-Cycle Checkpoints Often Leads to Aneuploidy in Tumor Cells	1138

25.5 Carcinogens and Caretaker Genes		
	in Cancer	1139
Carcinog	ens Induce Cancer by Damaging DNA	1139
Some Ca Specif	rcinogens Have Been Linked to Fic Cancers	1139
Loss of D	NA-Repair Systems Can Lead to Cancer	1141
Telomera Immo	ase Expression Contributes to rtalization of Cancer Cells	1143
GLOSS	ARY	G-1
INDEX		