CONTENTS

	Contents of Advanced Algebra	X
	List of Figures	xi
	Preface to the Revised Edition	xiii
	Preface to the Original Edition	XV
	Dependence Among Chapters	xix
	Standard Notation	XX
	Guide for the Reader	XXI
	PRELIMINARIES ABOUT THE INTEGERS,	
	POLYNOMIALS, AND MATRICES	1
	1. Division and Euclidean Algorithms	1
	2. Unique Factorization of Integers	4
	3. Unique Factorization of Polynomials	9
	4. Permutations and Their Signs	15
	5. Row Reduction	19
	6. Matrix Operations	24
	7. Problems	30
Ι.	VECTOR SPACES OVER \mathbb{Q} , \mathbb{R} , AND \mathbb{C}	33
	1. Spanning, Linear Independence, and Bases	33
	2. Vector Spaces Defined by Matrices	38
	3. Linear Maps	42
	4. Dual Spaces	50
	5. Quotients of Vector Spaces	54
	6. Direct Sums and Direct Products of Vector Spaces	58
	7. Determinants	65
	8. Eigenvectors and Characteristic Polynomials	73
	9. Bases in the Infinite-Dimensional Case	78
	10. Problems	82
II.	INNER-PRODUCT SPACES	89
	1. Inner Products and Orthonormal Sets	89
	2. Adjoints	99
	3. Spectral Theorem	105
	4. Problems	112

L

I

~		
10	nto	nte
CO	ue	IUS

IV.	GR	OUPS AND GROUP ACTIONS	117
	1.	Groups and Subgroups	118
	2.	Quotient Spaces and Homomorphisms	129
	3.	Direct Products and Direct Sums	135
	4.	Rings and Fields	141
	5.	Polynomials and Vector Spaces	148
	6.	Group Actions and Examples	159
	7.	Semidirect Products	167
	8.	Simple Groups and Composition Series	171
	9.	Structure of Finitely Generated Abelian Groups	176
	10.	Sylow Theorems	185
	11.	Categories and Functors	189
	12.	Problems	200
V.	TH	EORY OF A SINGLE LINEAR TRANSFORMATION	211
	1.	Introduction	211
	2.	Determinants over Commutative Rings with Identity	215
	3.	Characteristic and Minimal Polynomials	218
	4.	Projection Operators	226
	5.	Primary Decomposition	228
	6.	Jordan Canonical Form	231
	7.	Computations with Jordan Form	238
	8.	Problems	241
VI.	MU	LTILINEAR ALGEBRA	248
	1.	Bilinear Forms and Matrices	249
	2.	Symmetric Bilinear Forms	253
	3.	Alternating Bilinear Forms	256
	4.	Hermitian Forms	258
	5.	Groups Leaving a Bilinear Form Invariant	260
	6.	Tensor Product of Two Vector Spaces	263
	7.	Tensor Algebra	277
	8.	Symmetric Algebra	283
	9.	Exterior Algebra	291
	10.	Problems	295
VII.	AD	VANCED GROUP THEORY	306
	1.	Free Groups	306
	2.	Subgroups of Free Groups	317
	3.	Free Products	322
	4.	Group Representations	329

viii

VII	ADV	ANCED GROUP THEORY (Continued)	
¥ 11.	5	Burnside's Theorem	345
	6.	Extensions of Groups	347
	7.	Problems	360
VIII	. CON	MMUTATIVE RINGS AND THEIR MODULES	370
The second	1.	Examples of Rings and Modules	370
	2.	Integral Domains and Fields of Fractions	381
	3.	Prime and Maximal Ideals	384
	4.	Unique Factorization	387
	5.	Gauss's Lemma	393
	6.	Finitely Generated Modules	399
	7.	Orientation for Algebraic Number Theory and	41.1
		Algebraic Geometry	411
	8.	Noetherian Rings and the Hilbert Basis Theorem	41/
	9.	Integral Closure	420
	10.	Localization and Local Rings	428
	11.	Dedekind Domains	437
	12.	Problems	443
IX.	FIE	LDS AND GALOIS THEORY	452
	1.	Algebraic Elements	453
	2.	Construction of Field Extensions	457
	3.	Finite Fields	461
	4.	Algebraic Closure	464
	5.	Geometric Constructions by Straightedge and Compass	468
	6.	Separable Extensions	4/4
	7.	Normal Extensions	481
	8.	Fundamental Theorem of Galois Theory	484
	9.	Application to Constructibility of Regular Polygons	489
	10.	Application to Proving the Fundamental Theorem of Algebra	492
	11.	Application to Unsolvability of Polynomial Equations with	102
	(the last	Nonsolvable Galois Group	493
	12.	Construction of Regular Polygons	499
	13.	Solution of Certain Polynomial Equations with Solvable	506
		Galois Group	515
	14.	Proof That π is Transcendental	510
	15.	Norm and Trace	526
	16.	Splitting of Prime Ideals in Extensions	520
	17.	Two Tools for Computing Galois Groups	530
	18.	Problems	339

Contents

ix

Contents

X.	MO	DULES OVER NONCOMMUTATIVE RINGS	553
	1.	Simple and Semisimple Modules	553
	2.	Composition Series	560
	3.	Chain Conditions	565
	4.	Hom and End for Modules	567
	5.	Tensor Product for Modules	574
	6.	Exact Sequences	583
	7.	Problems	588
APH	PEND	IX	593
	A1.	Sets and Functions	593
	A2.	Equivalence Relations	599
	A3.	Real Numbers	601
	A4.	Complex Numbers	604
	A5.	Partial Orderings and Zorn's Lemma	605
	A6.	Cardinality	610
	Hint	s for Solutions of Problems	615
	Selec	cted References	715
	Inde.	x of Notation	717
	Inde.	x	721

CONTENTS OF ADVANCED ALGEBRA

. Indistrion to modern runnoer ricor	I.	Transition	to	Modern	N	Number	Theor
--------------------------------------	----	------------	----	--------	---	---------------	-------

- II. Wedderburn-Artin Ring Theory
- III. Brauer Group

X

- IV. Homological Algebra
- V. Three Theorems in Algebraic Number Theory
- VI. Reinterpretation with Adeles and Ideles
- VII. Infinite Field Extensions
- VIII. Background for Algebraic Geometry
- IX. The Number Theory of Algebraic Curves
- X. Methods of Algebraic Geometry