1	0	ntonts		
•	-01	itents		
D .		the Correct Filling		
PT	erace to	the Second Edition		X111
Pr	eface to	o the First Edition		xv
Sy	mbols	and Physical Constants		xvii
4	knowl	adramante		~
A	KIIOWI	eugements		AAI
1	Unof	ul Concento in Molecular Modelling		1
1	1 1	Introduction		1
	1.1	Coordinate Systems		1
	13	Potential Energy Surfaces		4
	1.5	Molecular Graphics		+ 5
	1.1	Surfaces		6
	1.6	Computer Hardware and Software		8
	1.7	Units of Length and Energy		9
	1.8	The Molecular Modelling Literature		9
	1.9	The Internet		9
	1.10	Mathematical Concepts		10
	Furth	er Reading		24
	Refer	ences		24
2	An I	ntroduction to Computational Quantum	n Mechanics	26
	2.1	Introduction		26
	2.2	One-electron Atoms		30
	2.3	Polyelectronic Atoms and Molecules		34
	2.4	Molecular Orbital Calculations		41
	2.5	The Hartree–Fock Equations		51
	2.6	Basis Sets	Calculating Thermodymanics	65
	2.7	Calculating Molecular Properties Usin	g ab initio Quantum Mechanics	74
	2.8	Approximate Molecular Orbital Theor	ies	86
	2.9	Semi-empirical Methods		86
	2.10	Huckel Theory	A starting the start in the starting and the	99
	4.11	renormance of Semi-empirical Metho	as and in Computational	102
	Appe	Quantum Chemistry	eu în computational	104
	Furth	er Reading		104
	Refer	ences		105

3	Adva	nced ab initio Methods, Density Functional Theory and Solid-state	100
	Quar	ntum Mechanics	108
	3.1	Introduction	108
	3.2	Open-shell Systems	108
	3.3	Electron Correlation	110
	3.4	Practical Considerations When Performing <i>ab initio</i> Calculations	117
	3.5	Energy Component Analysis	122
	3.6	Valence Bond Theories	124
	3.7	Density Functional Theory	126
	3.8	Quantum Mechanical Methods for Studying the Solid State	138
	3.9	The Future Role of Quantum Mechanics: Theory and Experiment	Adeno
		Working Together	160
	Appe	endix 3.1 Alternative Expression for a Wavefunction Satisfying Bloch's	161
	Ennth	Par Poading	161
	Pofor	ier Keading and bottel	162
	Kerer	ences	102
		A DE LE TILLE ALLE Melen Mederice Side District Alle	165
4	Emp	Irical Force Field Models: Molecular Mechanics	165
	4.1	Introduction	169
	4.2	Some General Features of Molecular Mechanics Force Fields	100
	4.3	Bond Stretching	170
	4.4	Angle Bending	173
	4.5	Iorsional Terms	175
	4.6	Improper Torsions and Out-of-plane Bending Motions	170
	4.7	Cross Terms: Class 1, 2 and 3 Force Fields	1/0
	4.8	Introduction to Non-bonded Interactions	101
	4.9	Electrostatic Interactions	101
	4.10	Van der Waals Interactions	204
	4.11	Many-body Effects in Empirical Potentials	212
	4.12	Effective Pair Potentials	214
	4.13	Hydrogen Bonding in Molecular Mechanics	215
	4.14	Force Field Models for the Simulation of Liquid Water	216
	4.15	United Atom Force Fields and Reduced Representations	221
	4.16	Derivatives of the Molecular Mechanics Energy Function	225
	4.17	Calculating Thermodynamic Properties Using a Force Field	226
	4.18	Force Field Parametrisation	228
	4.19	Transferability of Force Field Parameters	231
	4.20	The Treatment of Delocalised π Systems	233
	4.21	Force Fields for Inorganic Molecules	234
	4.22	Force Fields for Solid-state Systems	236
	4.23	Empirical Potentials for Metals and Semiconductors	240
	App	endix 4.1 The Interaction Between Two Drude Molecules	246
	Furth	ner Reading	247
	Refe	rences	247

Contents

5	Energ	y Minimisation and Related Methods for Exploring the Energy Surface	253
	5.1	Introduction	253
	5.2	Non-derivative Minimisation Methods	258
	5.3	Introduction to Derivative Minimisation Methods	261
	5.4	First-order Minimisation Methods	262
	5.5	Second Derivative Methods: The Newton-Raphson Method	267
	5.6	Quasi-Newton Methods	268
	5.7	Which Minimisation Method Should I Use?	270
	5.8	Applications of Energy Minimisation	273
	5.9	Determination of Transition Structures and Reaction Pathways	279
	5.10	Solid-state Systems: Lattice Statics and Lattice Dynamics	295
	Furthe	er Reading	300
	Refere	ences	301
6	Comp	outer Simulation Methods	303
	6.1	Introduction	303
	6.2	Calculation of Simple Thermodynamic Properties	307
	6.3	Phase Space	312
	6.4	Practical Aspects of Computer Simulation	315
	6.5	Boundaries	317
	6.6	Monitoring the Equilibration	321
	67	Truncating the Potential and the Minimum Image Convention	324
	68	Long-range Forces	334
	69	Analysing the Results of a Simulation and Estimating Errors	343
	Anno	ndiv 61 Basic Statistical Mechanics	347
	Appe	ndix 6.2 Heat Canacity and Energy Eluctuations	348
	Appe	ndix 6.3 The Real Case Contribution to the Virial	349
	Appe	ndix 6.4 Translating Particle Back into Contral Box for Three Box Shapes	350
	Appe	ar Reading	351
	Pafar	er keaung	351
	Keier	ences	551
			390
7	Mole	cular Dynamics Simulation Methods	353
	7.1	Introduction	353
	7.2	Molecular Dynamics Using Simple Models	353
	7.3	Molecular Dynamics with Continuous Potentials	355
	7.4	Setting up and Running a Molecular Dynamics Simulation	364
	7.5	Constraint Dynamics	368
	7.6	Time-dependent Properties	374
	7.7	Molecular Dynamics at Constant Temperature and Pressure	382
	7.8	Incorporating Solvent Effects into Molecular Dynamics: Potentials of	
		Mean Force and Stochastic Dynamics	387
	7.9	Conformational Changes from Molecular Dynamics Simulations	392
	7.10	Molecular Dynamics Simulations of Chain Amphiphiles	394

	Apper	ndix 7.1 Energy Conservation in Molecular Dynamics	405
Further Reading			
	Refere	ences	406
			110
3	Mont	e Carlo Simulation Methods	410
	8.1	Introduction	410
	8.2	Calculating Properties by Integration	412
	8.3	Some Theoretical Background to the Metropolis Method	417
	8.4	Implementation of the Metropolis Monte Carlo Method	420
	8.5	Monte Carlo Simulation of Molecules	423
	8.6	Models Used in Monte Carlo Simulations of Polymers	432
	8.7	'Biased' Monte Carlo Methods	102
	8.8	Tackling the Problem of Quasi-ergodicity: J-walking and Multicationical	433
		Monte Carlo	438
	8.9	Monte Carlo Sampling from Different Ensembles	442
	8.10	Calculating the Chemical Potential	443
	8.11	The Configurational Bias Monte Carlo Method	450
	8.12	Simulating Phase Equilibria by the Gibbs Ensemble Monte Carlo Method	452
	8.13	Monte Carlo or Molecular Dynamics?	453
	Appe	endix 8.1 The Marsaglia Random Number Generator	454
	Furth	ier Reading	454
	Refei	ences	123
0	Cont	formational Analysis	457
9	01	Introduction	457
	9.1	Systematic Methods for Exploring Conformational Space	458
	9.2	Model-building Approaches	464
	9.5	Random Search Methods	465
	95	Distance Geometry	467
	96	Exploring Conformational Space Using Simulation Methods	475
	97	Which Conformational Search Method Should I Use? A Comparison of	
	2.1	Different Approaches	476
	98	Variations on the Standard Methods	477
	99	Finding the Global Energy Minimum: Evolutionary Algorithms and	
		Simulated Annealing	479
	910	Solving Protein Structures Using Restrained Molecular Dynamics and	
	2.10	Simulated Annealing	483
	911	Structural Databases	489
	912	Molecular Fitting	490
	913	Clustering Algorithms and Pattern Recognition Techniques	491
	914	Reducing the Dimensionality of a Data Set	497
	915	Covering Conformational Space: Poling	499
	916	A 'Classic' Optimisation Problem: Predicting Crystal Structures	503

-	-	-	4 .		- 1	-
	n	n	Tf	2r	٦T	5
-	U	1.1	"	- 1	11	

	Further Reading References	505 506			
	innoer Reading	000			
10	Protein Structure Prediction, Sequence Analysis and Protein Folding	509			
	10.1 Introduction	509			
	10.2 Some Basic Principles of Protein Structure	513			
	10.3 First-principles Methods for Predicting Protein Structure	517			
	10.4 Introduction to Comparative Modelling	522			
	10.5 Sequence Alignment	522			
	10.6 Constructing and Evaluating a Comparative Model	539			
	10.7 Predicting Protein Structures by 'Threading'	545			
	10.8 A Comparison of Protein Structure Prediction Methods: CASP	547			
	10.9 Protein Folding and Unfolding	549			
	Appendix 10.1 Some Common Abbreviations and Acronyms Used in				
	Bioinformatics	553			
	Appendix 10.2 Some of the Most Common Sequence and Structural Databases				
	Used in Bioinformatics	555			
	Appendix 10.3 Mutation Probability Matrix for 1 PAM	556			
	Appendix 10.4 Mutation Probability Matrix for 250 PAM	557			
	Further Reading				
	References				

Four Challenges in Molecular Modelling: Free Energies, Solvation, Reactions and Solid-state Defects 11.1 Free Energy Calculations

11.1	Free Energy Calculations	563			
11.2	The Calculation of Free Energy Differences				
11.3	Applications of Methods for Calculating Free Energy Differences	569			
11.4	The Calculation of Enthalpy and Entropy Differences	574			
11.5	Partitioning the Free Energy	574			
11.6	Potential Pitfalls with Free Energy Calculations	577			
11.7	Potentials of Mean Force	580			
11.8	Approximate/'Rapid' Free Energy Methods				
11.9	Continuum Representations of the Solvent				
11.10	The Electrostatic Contribution to the Free Energy of Solvation:				
	The Born and Onsager Models	593			
11.11	Non-electrostatic Contributions to the Solvation Free Energy	608			
11.12	Very Simple Solvation Models	609			
11.13	Modelling Chemical Reactions	610			
11.14	Modelling Solid-state Defects	622			
Appen	ndix 11.1 Calculating Free Energy Differences Using Thermodynamic				
	Integration	630			
Appe	ndix 11.2 Using the Slow Growth Method for Calculating Free Energy				
	Differences	631			

ix

563

	Appen	dix 11.3 Expansion of Zwanzig Expression for the Free Energy Difference for the Linear Response Method	631
	Furthe	r Reading	632
	Refere	nces	633
		10.1 Introduction	
12	The U	se of Molecular Modelling and Chemoinformatics to Discover and	
	Design	n New Molecules	640
	12.1	Molecular Modelling in Drug Discovery	640
	12.2	Computer Representations of Molecules, Chemical Databases and 2D	
		Substructure Searching	642
	12.3	3D Database Searching	647
	12.4	Deriving and Using Three-dimensional Pharmacophores	648
	12.5	Sources of Data for 3D Databases	659
	12.6	Molecular Docking	661
	12.7	Applications of 3D Database Searching and Docking	667
	12.8	Molecular Similarity and Similarity Searching	668
	12.9	Molecular Descriptors	668
	12.10	Selecting 'Diverse' Sets of Compounds	680
	12.11	Structure-based De Novo Ligand Design	687
	12.12	Quantitative Structure-Activity Relationships	695
	12.13	Partial Least Squares	706
	12.14	Combinatorial Libraries	711
	Furthe	er Reading	719
	Refere	nces	720
	Contor	and Solid-state Defects	

Index

X

727