Contents

Lis	t of 1	Abbreviations	xi
Pre	eface	3.5.4 The Enhanced Statement of a 10	xiii
Ac	knou	vledgements	vii
1	Intr	roduction: Basic Concepts of Thermodynamics	1
	1.1	Macroscopic Characterization of a	
		Thermodynamic System	2
	1.2	Thermodynamic Parameters	5
	1.3	The Existence of Equilibrium States	11
	1.4	Thermodynamic States and State Functions	16
	1.5	The Structure of Thermodynamics	18
	1.6	A Brief Introduction to Shannon's Measure	
		of Information (SMI)	25
		1.6.1 The Four Steps of Obtaining Entropy	
		from the SMI	26
		1.6.2 First Step: Playing the Uniform	
		20Q Game	28
		1.6.3 Second Step: Playing the Non-uniform	
		20Q Game	31
		1.6.4 The Third Step: Generalization from	
		a 20Q Game to an Over 20 ²³ Q Game	34

VIII	The Four	Laws	That Do	Not	Drive	The	Universe
------	----------	------	---------	-----	-------	-----	----------

	1.6.5 The Final Step: The Entropy	
	Spawns as a Particular Case of a	
	20Q Game	37
	1.7 Some Concluding Remarks	38
2	The Zeroth Law (ZL)	41
	2.1 The Thermal Zeroth Law	42
	2.2 The Mechanical Zeroth Law	47
	2.3 The Material Zeroth Law	48
	2.4 The Law of Existence of Equilibrium States	
	of a Thermodynamic System	50
3	The First Law (FL)	53
	3.1 Conservation of Energy in Simple Physical	
	Systems	54
	3.2 The Extension of the Law of Conservation	
	of Energy to Include Thermal Energy	56
	3.3 The End of the Two Separate Laws;	
	the Conservation of Energy, and the	
	Conservation of Matter	61
	3.4 Applications of the FL	63
	3.5 Some Final Thoughts on the First Law	64
ł	The Second Law (SL)	69
	4.1 Introduction	72
	4.2 The Various Formulations of the SL	73
	4.3 Probability and Probability Distribution	75
	4.4 The Probability Formulation of the	
	Second Law	85

	Contents	s ix
	4.4.1 Generalizations of the Probability	
	Formulation of the Second Law	88
4	.5 The Entropy Formulation of the	
	Second Law	93
	4.5.1 Application of the SMI to a	
	Thermodynamic System	94
	4.5.2 Definition of the SMI on the	
	Probability Distribution of Locations	
	and Velocities of the Particles	95
	4.5.3 Definition of Entropy	96
	4.5.4 The Entropy Formulation of the	
	Second Law	99
4	.6 The Helmholtz Energy Formulation of the	
	Second Law	106
4	.7 The Gibbs Energy Formulation of the	
	Second Law	115
4	.8 Applications of the Second Law	118
	4.8.1 A System Having N Solvent	
	Molecules and One Simple Solute	
	Particle s	119
	4.8.2 A System with N Solvent Molecules	
	and One Solute Particle s Having	
	One Internal Rotational Degree	
	of Freedom	121
4	1.9 Some Final Thoughts on the Second Law	128
5]	The Third Law (TL)	135
5	5.1 The Various Formulation of the TL	136
5	5.2 Applications of the Third Law	138
5	5.3 Adiabatic Cooling	143

x The Four Laws That Do Not Drive The Universe	
5.4 Concluding Remarks	149
6 Which of the Four Laws Drive the Universe?	151
Notes References and Suggested Reading Index	159 175 179