DETAILED CONTENTS

About the Authors	xvii	The Role of Ecologists	27
Preface Preface	xviii	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
		The California Sea Otter	28
Chapter 1 Introduction: Ecology, Evoluti and the Scientific Method	on,		
Searching for Life at the Bottom of the Ocean	1	PART I LIFE AND THE PHYSICAL	198
Ecological systems exist in a hierarchy of organization	aldebay or	ENVIRONMENT	
Individuals	3	Chapter 2 Adaptations to Aquatic	
Populations and Species	3	Environments	32
Communities	5	The Evolution of Whales	33
Ecosystems	5	Water has many properties favorable to life	34
The Biosphere	6	Thermal Properties of Water	34
Studying Ecology at Different Levels		Density and Viscosity of Water	35
of Organization	6	Dissolved Inorganic Nutrients	36
Ecological systems are governed by physical		one to different tomogratures Allein	30
and biological principles	8	Animals and plants face the challenge of	40
Conservation of Matter and Energy	8	water and salt balance	40
Dynamic Steady States	8	Salt Balance in Aquatic Animals	40
Evolution	9	Adaptations in Freshwater Animals	41
Different organisms play diverse roles		Adaptations in Saltwater Animals	42
in ecological systems	10	Salt Balance in Aquatic Plants	43
Broad Evolutionary Patterns	10	ANALYZING ECOLOGY	
Categorizing Species Based on Sources of En	ergy 15	Standard Deviation and Standard Error	44
Types of Species Interactions	15	The uptake of gases from water is limited	
Habitat versus Niche	17	by diffusion	45
	01 Y201033	Carbon Dioxide	45
Scientists use several approaches to studying ecology	20	Oxygen	47
Observations, Hypotheses, and Predictions	20	Temperature limits the occurrence of aquatic life	49
Testing Hypotheses with Manipulative		Heat and Biological Molecules	49
Experiments	21	Cold Temperatures and Freezing	50
Alternative Approaches to Manipulative Experiments	23	Thermal Optima	51
ANALYZING ECOLOGY		The Decline of Coral Reefs	52
Why Do We Calculate Means and Variances?	24		qmal
Illumenta influence coalesis-levistence	36	GRAPHING THE DATA	55
Humans influence ecological systems	26	Determining Q ₁₀ Values in Salmon	20

		Environmental variation favors the evolution	
Chapter 3 Adaptations to Terrestrial		of variable phenotypes	89
Environments	56	Phenotypic Tradeoffs	89
The Evolution of Camels	57	Environmental Cues	91
Most terrestrial plants obtain nutrients and water		Response Speed and Reversibility	91
from the soil	58	Many organisms have evolved adaptations	
Soil Nutrients	58	to variation in enemies, competitors, and mates	92
Soil Structure and Water-Holding Capacity	58	Fnemies	92
Osmotic Pressure and Water Uptake	60	Competition for Scarce Resources	93
Transpiration and the Cohesion-Tension Theory	62	Mates	94
Sunlight provides the energy for photosynthesis	64	Many organisms have evolved adaptations	
Available and Absorbed Solar Energy	64	to variable abiotic conditions	95
Photosynthesis	66	Temperature	95
Structural Adaptations to Water Stress	71	Water Availability	97
Terrestrial environments pose a challenge for		Salinity	98
animals to balance water, salt, and nitrogen	71	Oxygen	98
Water and Salt Balance in Animals	72	Migration, storage, and dormancy are strategies	
ANALYZING ECOLOGY		to survive extreme environmental variation	99
Different Types of Variables	74	Migration	99
Water and Nitrogen Balance in Animals	74	Storage	100
Adaptations to different temperatures allow		Dormancy	100
terrestrial life to exist around the planet	75	ANALYZING ECOLOGY	
Sources of Heat Gain and Loss	75	Correlations	102
Body Size and Thermal Inertia	77	Adaptations to Prevent Freezing	103
Thermoregulation	77	Variation in food quality and quantity is	
Ectotherms	77	the basis of optimal foraging theory	103
Endotherms	78	Central Place Foraging	104
Adaptations of the Circulatory System	79	Risk-Sensitive Foraging	105
ECOLOGY TODAY: CONNECTING THE CONCEPTS		Optimal Diet Composition	107
The Challenge of Growing Cotton	80	Fig. 12 (1997) 1997 - 1997) 1994 1997 1997 1997 1997 1997 1997 1997	107
GRAPHING THE DATA		ECOLOGY TODAY: CONNECTING THE CONCEPTS	
Relating Mass to Surface Area and Volume	83	Responding to Novel Environmental Variation	108
		GRAPHING THE DATA	
Chapter 4 Adaptations to Variable Environments	84	The Foraging Behavior of American Robins	. 11
The Fine-Tuned Phenotypes of Frogs	85	Chapter 5 Climates and Soils	112
Ecological systems and processes vary		Where Does Your Garden Grow?	112
in time and space	86	where Does four duruen drow?	113
Temporal Variation	87	Earth is warmed by the greenhouse effect	114
Spatial Variation	87	The Greenhouse Effect	114
Correlation of Spatial and Temporal Dimensions	88	Greenhouse Gases	115

There is an unequal heating of Earth by the Sun	116	Boreal Forests	142
The Path and Angle of the Sun	116	Temperate Rainforests	143
Seasonal Heating of Earth	117	Temperate Seasonal Forests	144
ANALYZING ECOLOGY		Woodlands/Shrublands	145
Regressions	118	Temperate Grasslands/Cold Deserts	145
The unequal heating of Earth drives air		Tropical Rainforests	146
currents in the atmosphere	119	Tropical Seasonal Forests/Savannas	147
Properties of Air	119	Subtropical Deserts	148
Formation of Atmospheric Convection Current	s 120	Aquatic biomes are categorized by their flow,	
Earth's Rotation and the Coriolis Effect	122	depth, and salinity	148
Ocean currents also affect the distribution		Streams and Rivers	148
of climates	123	Ponds and Lakes	149
Gyres and bubbines is large	124	Freshwater Wetlands	152
Upwelling	125	Salt Marshes/Estuaries	153
The El Niño-Southern Oscillation	125	Mangrove Swamps	153
Thermohaline Circulation	126	Intertidal Zones	154
Consilion and a second first section of the st		Coral Reefs	154
Smaller-scale geographic features can affect regional and local climates	127	The Open Ocean	154
Continental Land Area	127	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
Proximity to Coasts	127	Changing Biome Boundaries	156
Rain Shadows	128	GRAPHING THE DATA	150
Climate and the underlying bedrock interact		Building Bar Graphs	139
to create a diversity of soils	129		
Soil Formation	129	e Number versus Offsmine Size	gagallo
Weathering	130	PART II ORGANISMS	
ECOLOGY TODAY: CONNECTING THE CONCEPTS Global Climate Change	133	Chapter 7 Evolution and Adaptation	160
GRAPHING THE DATA		Darwin's Finches	161
Creating a Climate Diagram	135	The process of evolution depends on genetic variation	162
Chapter 6 Terrestrial and Aquatic		The Structure of DNA	162
Biomes	136	Genes and Alleles	162
		Dominant and Recessive Alleles	163
The World of Wine	137	Sources of Genetic Variation	164
Terrestrial biomes are categorized by their			104
major plant growth forms	138	Evolution can occur through random processes or through selection	165
Climate Diagrams	140	tal conditions	
ANALYZING ECOLOGY		Evolution Through Random Processes	166
Mean, Median, and Mode	141	Evolution Through Selection	169
There are nine categories of terrestrial biomes	141	ANALYZING ECOLOGY Strength of Selection, Heritability, and	
Tundras noitbeloc trebrings G-	142	Response to Selection	172

Microevolution operates at the population level	173	Selecting On Life Histories	
Artificial Selection	173	With Commercial Fishing	203
Natural Selection	174	GRAPHING THE DATA	
Macroevolution operates at the species level		Lizard Offspring Number versus Offspring Mass	205
and higher levels of taxonomic organization	176		
Phylogenetic Trees	177	Chapter 9 Reproductive Strategies	206
Allopatric Speciation	178	The Sex Life of Honeybees	207
Sympatric Speciation	178		200
Key Innovations	180	Reproduction can be sexual or asexual	208
ECOLOGY TODAY: CONNECTING THE CONCEPTS		Sexual Reproduction	208
Drug-Resistant Tuberculosis	181	Asexual Reproduction	208
GRAPHING THE DATA		Costs of Sexual Reproduction	210
Natural Selection on Finch Beaks	183	Benefits of Sexual Reproduction	211
		Organisms can evolve as separate sexes	lawigU
Chapter 8 Life Histories	184	or as hermaphrodites	213
Live, Breed, and Die	185	Comparing Strategies	215
		Selfing versus Outcrossing of Hermaphrodites	216
Life history traits represent the schedule of an organism's life	186	Mixed Mating Strategies	216
The Slow-to-Fast Life History Continuum	186	Sex ratios of offspring are typically balanced,	
Combinations of Life History Traits in Plants	187	but they can be modified by natural selection	216
	189	Mechanisms of Sex Determination	216
Life history traits are shaped by trade-offs		Offspring Sex Ratio	218
The Principle of Allocation	189	ANALYZING ECOLOGY	
Offspring Number versus Offspring Size	189	Frequency-Dependent Selection	219
ANALYZING ECOLOGY	190	Mating systems describe the pattern	
Coefficients of Determination		of mating between males and females	220
Offspring Number versus Parental Care	191	Promiscuity	221
Fecundity and Parental Care versus Parental Survival	192	Polygamy	221
Growth versus Age of Sexual Maturity	2000000011	Monogamy	222
and Life Span	193	Wellogality	
		Sexual selection favors traits that	222
Organisms differ in the number of times that the reproduce, but they eventually become senesce		facilitate reproduction	223
and Recessive Villeles		Sexual Dimorphism	223
Semelparity and Iteroparity	195	The Evolution of Female Choice	224
Senescence	197	Runaway Sexual Selection	225
Life histories are sensitive to		The Handicap Principle	226
environmental conditions	198	Sexual Conflict	226
Stimuli for Change	198	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
The Effects of Resources	199	Male-hating Microbes	227
Effects of Predation	200	GRAPHING THE DATA	
Effects of Global Warming	200	Frequency-Dependent Selection	229

Chapter 10 Social Behaviors	230	The distribution properties of populations	
The Life of a Fungus Farmer	231	can be estimated	256
a Zara ry away Solling to Infect the host	HI OMMINANO	Quantifying the Location and Number of Individuals	256
Living in groups has costs and benefits	232		250
Benefits of Living in Groups	233	ANALYZING ECOLOGY Mark-Recapture Surveys	258
Costs of Living in Groups	234		
Territories	235	Quantifying the Dispersal of Individuals	258
Dominance Hierarchies	236	Population abundance and density are related to geographic range and adult body size	259
There are many types of social interactions	236	Population Abundance and Geographic	
The Types of Social Interactions	236	Range	260
Altruism and Kin Selection	237	Population Density and Adult Body Size	260
ANALYZING ECOLOGY		Dispersal is essential to colonizing new areas	261
Calculating Inclusive Fitness	239	Dispersal Limitation	261
Eusocial species take social interactions		Habitat Corridors	261
to the extreme	240		P. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
Eusociality in Ants, Bees, and Wasps	240	Many populations live in distinct patches of habitat	263
Eusociality in Other Species	242		
The Origins of Eusociality	242	The Ideal Free Distribution Among Habitats	263
ECOLOGY TODAY: CONNECTING THE CONCEPTS		Conceptual Models of Spatial Structure	265
Hen-Pecked Chickens	243	ECOLOGY TODAY: CONNECTING THE CONCEPTS	267
GRAPHING THE DATA		The Invasion of the Emerald Ash Borer	267
How Living In Groups Affects Predation Risk	245	GRAPHING THE DATA An Ideal Free Distribution	269
d herbivory favor the evolution	ns noitsbeit	Chapter 12 Population Growth	dini selT
PART III POPULATIONS	of detunaes.	and Regulation	270
Chapter 11 Population Distributions	246	The Human Population Explosion	271
Bringing Back the Mountain Boomer	247	Under ideal conditions, populations can grow rapidly	272
The distribution of populations is limited		The Exponential Growth Model	272
to ecologically suitable habitats	249	The Geometric Growth Model	273
Determining Suitable Habitats	249	Comparing the Exponential and Geometric	
Ecological Niche Modeling	250	Growth Models	274
Habitat Suitability and Global Warming	252	Population Doubling Time	275
Population distributions have five		Populations have growth limits	276
important characteristics	253	Density-Independent Factors	276
Geographic Range	254	Density-Dependent Factors	277
Abundance	254	Positive Density Dependence	278
Density April 2 and 2 and 2 and 2 and 2	254	The Logistic Growth Model	281
Dispersion 2010 10 95	255	Predicting Human Population Growth	antisali
Dispersal	256	with the Logistic Equation	283

Population growth rate is influenced by the proportions of individuals in different age,		The Recovery of the Black-footed Ferret	313
size, and life history classes	283	GRAPHING THE DATA	
Age Structure	283	Exploring the Equilibrium of the Basic	g ni gniv
Survivorship Curves	285	Metapopulation Model	315
Life Tables	285		
Collecting Data for Life Tables	288		ofineT
ANALYZING ECOLOGY Calculating Life Table Values	289	PART IV SPECIES INTERACTIONS Chapter 14 Predation and Herbivory	316
Saving The Sea Turtles	291	A Century-long Mystery of the Lynx and	
GRAPHING THE DATA		the Hare	317
Survivorship Curves	293	Predators and herbivores can limit the abundance of populations	319
Chapter 13 Population Dynamics over		Predators Predators	319
Space and Time	294	Mesopredators	320
Monitoring Moose in Michigan	295	Herbivores	321
Populations fluctuate naturally over time	296	Populations of consumers and consumed	
Age Structure Fluctuations	297	populations fluctuate in regular cycles	323
Overshoots and Die-offs	298	Creating Predator-Prey Cycles in the	20.4
Cyclic Population Fluctuations	300	Laboratory	324
Density dependence with time delays can cause		Mathematical Models of Predator-Prey Cycles	325
populations to be inherently cyclic	300	Functional and Numerical Responses	328
The Inherent Cycling Behavior of Populations	300		320
Delayed Density Dependence	301	Predation and herbivory favor the evolution	201
ANALYZING ECOLOGY		of defenses	331
Delayed Density Dependence in the Flixweed	303	Defenses Against Predators	331
Cycles in Laboratory Populations	303	Defenses Against Herbivores ANALYZING ECOLOGY	336
Chance events can cause small populations		Understanding Statistical Significance	337
to go extinct	305	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
Extinction in Small Populations	306	The Trouble with Cats and Rabbits	339
Extinction Due to Variation in Population Growth Rates	307	GRAPHING THE DATA The Functional Response of Wolves	341
Metapopulations are composed of subpopulations that can experience independent population	Population		
dynamics across space	308	Chapter 15 Parasitism and Infectious Diseases	3/12
The Fragmented Nature of Habitats	308		342
The Basic Model of Metapopulation Dynamics	309	The Life of Zombies	343
Observing Metapopulation Dynamics in Nature	310	Many different types of parasites affect	
The Importance of Patch Size and		the abundance of host species	345
Patch Isolation	310	Ectoparasites	346

Endoparasites	347	Competition can occur through exploitation	
Parasite and host dynamics are determined		or direct interference, or it may be apparent	204
by the parasite's ability to infect the host	352	competition and sedementation (SMS)	381
Mechanisms of Parasite Transmission	353	Interference Competition: Aggressive Interactions	381
Modes of Entering the Host	354	Interference Competition: Allelopathy	382
Jumping Between Species	354	Apparent Competition	382
Reservoir Species	354		ELIDETE
The Host's Immune System	354	ANALYZING ECOLOGY Chi-square Tests	385
	INIXYIANA	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
Parasite and host populations commonly fluctuate in regular cycles	354	Finding the Forest in the Ferns	386
Population Fluctuations in Nature	355	Competition for a Shared Resource	389
Modeling Parasite and Host Populations	356	Competition for a shared resource	307
Parasites have evolved offensive strategies		Chapter 17 Mutualism	390
while hosts have evolved defensive strategies	358	The Magnificent purposessive statements and some	
Parasite Adaptations	358	Living with Crabs	391
Host Adaptations	359	Mutualisms can improve the acquisition of water,	
ANALYZING ECOLOGY		nutrients, and places to live	392
Comparing Two Groups with a t-Test	360	Acquisition of Resources in Plants	394
Coevolution	360	Acquisition of Resources in Animals	395
ECOLOGY TODAY: CONNECTING THE CONCEPTS		Mutualisms can aid in defense against enemies	397
Of Mice and Menand Lyme Disease	362	Plant Defense	397
GRAPHING THE DATA		Animal Defense	398
Time Series Data	365		
		Mutualisms can facilitate pollination and seed dispersal	400
Chapter 16 Competition	366		
Anagas -		Pollination	400
The Complexity of Competition	367	Seed Dispersal	401
Competition occurs when individuals experience		Mutualisms can change when conditions change	402
limited resources	368	From Positive to Negative Interactions	402
The Role of Resources	369	Dealing with Cheaters	403
The Competitive Exclusion Principle	372	Mutualisms can affect communities	403
The theory of competition is an extension		Effects on Species Distributions	404
of logistic growth models	374	Effects on Communities	404
Competition for a Single Resource	374		404
Competition for Multiple Resources	378	ANALYZING ECOLOGY Comparing Two Groups That Do Not	
The outcome of competition can be altered		Have Normal Distributions	406
by abiotic conditions, disturbances, and		Effects on Ecosystem Function	407
interactions with other species	379		707
Abiotic Conditions	379	Dealing with the Death of Dispersers	409
Disturbances	380	Aladant	OMERICA
Predation and Herbivory	380	GRAPHING THE DATA Ecosystem Function of Fungi	411
- Total and Tiology	500	Leosystem ranction or rungi	TIL

	muetnico)	Chapter 19 Community Succession	442
PART V COMMUNITIES AND ECOSYSTEMS		Retreating Glaciers in Alaska	443
Chapter 18 Community Structure	412	Succession occurs in a community when species replace each other over time	444
A Web of Interactions in Social Spiders	413	Observing Succession	445
Communities can have distinct or gradual boundaries	414	Succession in Terrestrial Environments Succession in Aquatic Environments	447 450
Community Zonation	414	ANALYZING ECOLOGY	
Categorizing Communities	416	Quantifying Community Similarity	453
Ecotones	416	Change in Species Diversity	454
Communities with Interdependent versus Independent Species Distributions	418	Succession can occur through different mechanisms	454
The diversity of a community incorporates both the number and relative abundance	redució.	Traits of Early- versus Late-Succession Species Facilitation, Inhibition, and Tolerance	455 456
of species	420	Tests for the Mechanisms of Succession	457
Patterns of Abundance Among Species Rank-Abundance Curves	420	Succession does not always produce a single climax community	459
ANALYZING ECOLOGY		Changes in Climax Communities over Time	459
Calculating Species Diversity	421	Changes in Climax Communities over Space	460
Species diversity is affected by resources,		Transient Climaxes	460
habitat diversity, keystone species, and	421	Creating Gaps in a Climax Community	461
disturbance		Climax Communities Under Extreme	DIMERIA
Resources	424	Environmental Conditions	462
Habitat Diversity	426	ECOLOGY TODAY: CONNECTING THE CONCEPTS	1.00
Keystone Species	426	Promoting Succession on a Strip Mine	463
Disturbances	428	GRAPHING THE DATA	165
Communities are organized into food webs	430	Species Richness at Glacier Bay	465
Trophic Levels	430	Chapter 20 Movement of Energy	
Direct versus Indirect Effects	431	in Ecosystems	466
Top-down and Bottom-up Effects	434	Worming Your Way into an Ecosystem	467
Communities respond to disturbances with		Primary productivity provides energy to	
resistance, with resilience, or by switching among alternative stable states	435	the ecosystem	468
		Primary Productivity	468
Community Stability	435	Measuring Primary Productivity	470
Alternative Stable States	436	Secondary Production	472
ECOLOGY TODAY: CONNECTING THE CONCEPTS Lethal Effects of Pesticides at		Net primary productivity differs	
Nonlethal Concentrations	438	among ecosystems	474
	STARTING.	Primary Productivity Around the World	474
GRAPHING THE DATA Log-Normal Distributions		Drivers of Productivity in Terrestrial Ecosystem	s 474
and Rank-Abundance Curves	441	Drivers of Productivity in Aquatic Ecosystems	476

The movement of energy depends on the efficiency of energy flow	479	Allochthonous Inputs to Streams and Wetlands	508
Trophic Pyramids	479	Decomposition and Sedimentation in Rivers,	
The Efficiencies of Energy Transfers	481	Lakes, and Oceans	509
	56176	Stratification of Lakes and Oceans	509
ANALYZING ECOLOGY Quantifying Trophic Efficiencies	484	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
Residence Times	484	Cycling Nutrients in New Hampshire	510
Stoichiometry	485	GRAPHING THE DATA	
ECOLOGY TODAY: CONNECTING THE CONCEPTS		The Decomposition of Organic Matter	513
Feeding an Ocean of Whales	487		
GRAPHING THE DATA		anoitesadiena (caralogue)	o consi
NPP Versus the Total Primary		PART VI GLOBAL ECOLOGY	
Productivity of Ecosystems	489	Chapter 22 Landscape Ecology, Biogeography, and Global Biodiversity	514
Chapter 21 Movement of Elements		Science, Nature, Resease 1946 H189 & BANGER BA	314
	490	The Magnificent Biodiversity of the Cape Floristic Region	515
Living in a Dead Zone	491	Landscape ecology examines ecological patterns	
The hydrologic cycle moves many elements		and processes at large spatial scales	516
through ecosystems	493	Causes of Habitat Heterogeneity	516
The Hydrologic Cycle	493	Relationships Between Habitat Heterogeneity	
Human Impacts on the Hydrologic Cycle	494	and Species Diversity	518
The carbon cycle is closely tied to the		Local and Regional Species Diversity	518
movement of energy	494	The number of species increases with area	519
The Carbon Cycle	494	Species-area Relationships	519
Human Impacts on the Carbon Cycle	496	Habitat Fragmentation	521
Nitrogen cycles through ecosystems		ANALYZING ECOLOGY	
in many different forms	497	Estimating the Number of Species in an Area	522
The Nitrogen Cycle	497	The equilibrium theory of island biogeography	
Human Impacts on the Nitrogen Cycle	499	incorporates both area and isolation	526
The phosphorus cycle moves between land water	500	The Evidence	526
The Phosphorus Cycle	500	The Theory	527
Human Impacts on the Phosphorus Cycle	501	Applying the Theory to the Design	
	301	of Nature Reserves	529
In terrestrial ecosystems, most nutrients	F01	On a global scale, biodiversity is highest	
regenerate in the soil	501	near the equator and declines toward the poles	530
The Importance of Weathering	502	Patterns of Diversity	530
The Breakdown of Organic Matter	504	Processes that Underlie Patterns of Diversity	531
Decomposition Rates Among Terrestrial Ecosystems	506	The distribution of species around the world	
	300	The distribution of species around the world is affected by Earth's history	534
Calculating Decomposition Rates of Leaves	507	Continental Drift	534
		Biogeographic Regions	535
In aquatic ecosystems, most nutrients regenerate in the sediments	507	Historic Climate Change	536

ECOLOGY TODAY: CONNECTING THE CONCEPTS		Pollution	556
Taking a Long Walk for Conservation	537	ANALYZING ECOLOGY	emiclency of el
GRAPHING THE DATA		Contaminant Half-Lives	557
Species Accumulation Curves	539	Global Climate Change	557
		Conservation efforts can slow or reverse	
Chapter 23 Global Conservation		declines in biodiversity	559
of Biodiversity	540	Habitat Protection	560
Detailed Hatenats of Biodiversity	541	Reduced Harvesting	561
Protecting Hotspots of Biodiversity	agno Tela sili	Species Reintroductions	562
The value of biodiversity arises from social,	543	ECOLOGY TODAY: CONNECTING THE CONCEPTS	
economic, and ecological considerations		Returning Wolves to Yellowstone	563
Instrumental Values	543	GRAPHING THE DATA	
Intrinsic Values	544	Stacked Bar Graphs	565
Although extinction is a natural process,			
its current rate is unprecedented	544	Appendices	
Background Extinction Rates	545		A-1
A Possible Sixth Mass Extinction	545		A 7
Global Declines in Species Diversity	545	Statistical Tables	A-7 ad
Global Declines in Genetic Diversity	548	Answers to Analyzing Ecology and	
Human activities are causing the		Graphing the Data exercises	A-11
loss of biodiversity	550	Suggested Readings	A-19
Habitat Loss	550	Suggested Reduings	
Overharvesting	552	Glossary	G-1
Introduced Species	554	Index	1-1
Introduced species	The second	acts on the Carbon cycle	