FOREWORD

PREFACE

Patrick Billingsley 1925-2011

Chapter I PROBABILITY

BOREL'S NORMAL NUMBER THEOREM, 1 The Unit Interval—The Weak Law of Large Numbers—The Strong Law of Large Numbers—Strong Law Versus Weak—Length—The Measure Theory of Diophantine Approximation*

2. PROBABILITY MEASURES, 18

Spaces — Assigning Probabilities — Classes of Sets — Probability Measures — Lebesgue Measure on the Unit Interval — Sequence Space* — Constructing σ -Fields*

3. EXISTENCE AND EXTENSION, 39

Construction of the Extension – Uniqueness and the $\pi - \lambda$ Theorem – Monotone Classes – Lebesgue Measure on the Unit Interval – Completeness – Nonmeasurable Sets – Two Impossibility Theorems*

4. DENUMERABLE PROBABILITIES, 53

General Formulas – Limit Sets – Independent Events – Subfields – The Borel–Cantelli Lemmas – The Zero–One Law

5. SIMPLE RANDOM VARIABLES, 72

Definition – Convergence of Random Variables – Independence – Existence of Independent Sequences – Expected Value – Inequalities

*Asterisks indicate topics that may be omitted on a first reading.

xiii

XV

6. THE LAW OF LARGE NUMBERS, 90

The Strong Law—The Weak Law—Bernstein's Theorem—A Refinement of the Second Borel–Cantelli Lemma

7. GAMBLING SYSTEMS, 98

Gambler's Ruin-Selection Systems-Gambling Policies-Bold Play*-Timid Play*

8. MARKOV CHAINS, 117

Definitions—Higher-Order Transitions—An Existence Theorem—Transience and Persistence—Another Criterion for Persistence—Stationary Distributions—Exponential Convergence*—Optimal Stopping*

9. LARGE DEVIATIONS AND THE LAW OF THE ITERATED LOGARITHM, 154

Moment Generating Functions—Large Deviations—Chernoff's Theorem*—The Law of the Iterated Logarithm

Chapter 2 MEASURE

10. GENERAL MEASURES, 167

Classes of Sets – Conventions Involving ∞ – Measures – Uniqueness

11. OUTER MEASURE, 174

Outer Measure - Extension - An Approximation Theorem

12. MEASURES IN EUCLIDEAN SPACE, 181

Lebesgue Measure – Regularity – Specifying Measures on the Line – Specifying Measures in R^k – Strange Euclidean Sets*

13. MEASURABLE FUNCTIONS AND MAPPINGS, 192

Measurable Mappings – Mappings into R^k – Limits and Measurability – Transformations of Measures

14. DISTRIBUTION FUNCTIONS, 198

Distribution Functions—Exponential Distributions—Weak Convergence—Convergence of Types*—Extremal Distributions*

Chapter 3

15. THE INTEGRAL, 211

Definition - Nonnegative Functions - Uniqueness

16. PROPERTIES OF THE INTEGRAL, 218

Equalities and Inequalities – Integration to the Limit – Integration over Sets – Densities – Change of Variable – Uniform Integrability – Complex Functions

17. THE INTEGRAL WITH RESPECT TO LEBESGUE MEASURE, 234

The Lebesgue Integral on the Line—The Riemann Integral—The Fundamental Theorem of Calculus—Change of Variable—The Lebesgue Integral in R^k —Stieltjes Integrals

18. PRODUCT MEASURE AND FUBINI'S THEOREM, 245

Product Spaces – Product Measure – Fubini's Theorem – Integration by Parts – Products of Higher Order

19. THE LP SPACES*, 256

Definitions – Completeness and Separability – Conjugate Spaces – Weak Compactness – Some Decision Theory – The Space L^2 – An Estimation Problem

Chapter 4 RANDOM VARIABLES AND EXPECTED VALUES 271

20. RANDOM VARIABLES AND DISTRIBUTIONS, 271

Random Variables and Vectors— Subfields—Distributions—Multidimensional Distributions—Independence—Sequences of Random Variables—Convolution—Convergence in Probability—The Glivenko–Cantelli Theorem*

21. EXPECTED VALUES, 291

Expected Value as Integral—Expected Values and Limits—Expected Values and Distributions—Moments—Inequalities—Joint Integrals—Independence and Expected Value—Moment Generating Functions

112 nd Moment Generating Fil

22. SUMS OF INDEPENDENT RANDOM VARIABLES, 300

The Strong Law of Large Numbers – The Weak Law and Moment Generating Functions – Kolmogorov's Zero–One Law – Maximal Inequalities – Convergence of Random Series – Random Taylor Series*

23. THE POISSON PROCESS, 316

Characterization of the Exponential Distribution—The Poisson Process—The Poisson Approximation—Other Characterizations of the Poisson Process—Stochastic Processes

24. THE ERGODIC THEOREM*, 330

Measure-Preserving Transformations – Ergodicity – Ergodicity of Rotations – Proof of the Ergodic Theorem – The Continued-Fraction Transformation – Diophantine Approximation

Chapter 5

CONVERGENCE OF DISTRIBUTIONS

349

25. WEAK CONVERGENCE, 349

Definitions – Uniform Distribution Modulo 1* – Convergence in Distribution – Convergence in Probability – Fundamental Theorems – Helly's Theorem – Integration to the Limit

26. CHARACTERISTIC FUNCTIONS, 365

Definition – Moments and Derivatives – Independence – Inversion and the Uniqueness Theorem – The Continuity Theorem – Fourier Series*

27. THE CENTRAL LIMIT THEOREM, 380

Identically Distributed Summands – The Lindeberg and Lyapounov Theorems – Dependent Variables*

28. INFINITELY DIVISIBLE DISTRIBUTIONS*, 394

Vague Convergence—The Possible Limits—Characterizing the Limit

29. LIMIT THEOREMS IN R^k, 402

The Basic Theorems – Characteristic Functions – Normal Distributions in R^k – The Central Limit Theorem

30. THE METHOD OF MOMENTS*, 412

The Moment Problem – Moment Generating Functions – Central Limit Theorem by Moments – Application to Sampling Theory – Application to Number Theory

Chapter 6 DERIVATIVES AND CONDITIONAL PROBABILITY 425

31. DERIVATIVES ON THE LINE*, 425

The Fundamental Theorem of Calculus – Derivatives of Integrals – Singular Functions – Integrals of Derivatives – Functions of Bounded Variation

32. THE RADON-NIKODYM THEOREM, 446

Additive Set Functions—The Hahn Decomposition—Absolute Continuity and Singularity—The Main Theorem

33. CONDITIONAL PROBABILITY, 454

The Discrete Case—The General Case—Properties of Conditional Probability—Difficulties and Curiosities—Conditional Probability Distributions

34. CONDITIONAL EXPECTATION, 472

Definition – Properties of Conditional Expectation – Conditional Distributions and Expectations – Sufficient Subfields* – Minimum-Variance Estimation*

35. MARTINGALES, 487

Definition – Submartingales – Gambling – Functions of Martingales – Stopping Times – Inequalities – Convergence Theorems – Applications: Derivatives – Likelihood Ratios – Reversed Martingales – Applications: de Finetti's Theorem – Bayes Estimation – A Central Limit Theorem*

Chapter 7 STOCHASTIC PROCESSES

36. KOLMOGOROV'S EXISTENCE THEOREM, 513 Stochastic Processes – Finite-Dimensional

Distributions-Product Spaces-Kolmogorov's Existence

Theorem – The Inadequacy of \mathcal{R}^T – A Return to Ergodic Theory – The Hewitt–Savage Theorem^{*}

37. BROWNIAN MOTION, 530

Definition—Continuity of Paths—Measurable Processes—Irregularity of Brownian Motion Paths—The Strong Markov Property—The Reflection Principle—Skorohod Embedding—Invariance*

38. NONDENUMERABLE PROBABILITIES, 558 Introduction – Definitions – Existence

Theorems - Consequences of Separability*

APPENDIX

NOTES ON THE PROBLEMS

BIBLIOGRAPHY

INDEX

617 619

571