CONTENTS

PREFACE		3
INTRODUCTION		6
Laboratory	Objectives	6
•	boratory Rules	6
Safety Req	uirements	6
	n for Actual Laboratory Experiment	7
	n the Measurement	7
•	s of Laboratory Report	8
Significant		8
Units	•	9
00. THE THEORY	OF ERRORS	10
0.1 SYSTEM	ATIC ERRORS	11
0.1.1 Erro	ors In the Calibration of the Instrument	13
0.1.2 Erro	ors Inherent in Reading the Scale	13
0.1.3 Erro	ors Inherent in Sensitivity to Changes	13
0.1.4 Acc	suracy of Instruments for Measuring Electric Quantities	13
0.2 RANDON	M ERRORS	14
0.3 ERRORS	S OF INDIRECTLY MEASURED QUANTITIES	18
	CAL REPRESENTATION OF EXPERIMENTAL DATA	20
	TED VARIABLES	21
	ar Correlation	21
	FEXPERIMENTS	
Exp # 1.1		26
Exp # 1.2	Density of Liquids – Hydrostatic Method	32
Exp # 1.3	Density of Liquids – Measurement by Mohr Balance	34
Exp # 1.4	Density of Liquids – Pycnometer Method	36
Exp. # 2.1	Free-Fall Acceleration	
	- Measurement by a Reverse Pendulum	38
Exp. # 3.1	Measuring the Moment of Inertia	
	of an Odd Shaped Object Built as a Torsional Pendulum	42
Exp. # 4.1	Measuring Young's Modulus	
E # E 4	from the Wire Extension	46
Exp. # 5.1	The Stokes' Method for Measuring	- 4
E #50	the Coefficient of the Dynamic Viscosity	51
Exp. # 5.2	Measuring the Coefficient of Dynamic Viscosity	
F . #74	Using the Hőppler Viscosimeter	56
Exp. # 7.1	Linear Expansion of Pure Metals	58
Exp. # 8.1	Measuring the Specific Heat Capacity of Metals	~4
C #00	Using the Calorimetric Method	61
Exp. # 8.2	Specific Heat Capacity of Liquids – Electrical Calorimeter	00
Exp. # 9.1	Latent Heat of Melting Ice	68
Exp. # 9.2	Latent Heat of Evaporation	71
Exp. # 10.1	Mapping the Electric Field	73
Exp. # 12.1	Ammeter-Voltmeter Methods of Measuring Resistances	70
Ev. # 40.0	Straightforward Methods of Measuring Resistances	78
Exp. # 12.2	Measuring Resistances by the Wheastone Bridge	82
Exp. # 12.3	Measuring Resistances by the Substitution Method	85
Exp. # 13.1	Electrolysis. The Determination of Faraday's Constant and Avogadro's Number	86
	and avadania s mininci	(DC)

Exp. # 14.1	Sound Intensity Measurement- The Rayleigh Plate	89
Exp. # 14.2	Young's Modulus	
	 Experimental Finding from the Speed of Sound 	95
Exp. # 16.1	Voltage-Current Characteristic of	
	A Conductor and Thermistor	99
Exp. # 17.1	Hysteresis Loop	102
Exp. # 18.1	Mapping of the Magnetic Field Lines	106
Exp. # 19.1	Self-Inductance and Mutual Inductance Measurement	110
Exp. # 20.1	The Millican Oil-Drop Experiment	
·	- Measurement of Small Electric Charges	114
Exp. # 21.1	Thin Converging Lens	
·	- Measurement of the Focal Length	118
Exp. # 21.2	Thin Diverging lens	
•	- Measurement of the Focal Length	122
Exp. # 21.3	Thin Converging Lens	
·	- The Bessel Method for the Focal Length Measurement	124
Exp. # 21.4	Thick Converging Lens	
·	- The Abbe Method for the Focal Length Measurement	126
Exp. # 22.1	Wavelength Measurement	
·	Using Michelson Interferometer	128
Exp. # 22.5	Interference Pattern and Polarization Study	132
Exp. # 27.1	Activity of Alpha Radiation Source measurement	
•	- Ionization Chamber	134
Exp. # 27.3	Absorption of Beta Radiation	141
Exp. # 27.5	Absorption of Gamma Radiation	144
Exp. # 27.6	Measurement of the Spectrum of Gamma Radiation	149
Exp. # 28.0	DAQ Systems and Three Demonstration Experiments	151
Exp. # 28.1	DAQ System Setup using GPIB and RS 232 Interface	159
Exp. # 28.2	Modular Industrial DAQ System	162
Exp. # 28.3	Universal and Mobile Multichannel DAQ System	164