Contents

Chapter 1: Biological Systems Reductionism and Systems Biology Even Simple Systems Can Confuse Us Why Now? 10 Communicating Systems Biology 13 The Task Before Us 16 17 Exercises 17 References Further Reading

1

5

8

18

Chapter 2: Introduction to		
	Mathematical Modeling	19
Goals,	Inputs, and Initial Exploration	24
2.1	Questions of Scale	24
2.2	Data Availability	25
Model	Selection and Design	26
2.3	Model Structure	27
2.4	System Components	30
2.5	Model Equations	35
2.6	Parameter Estimation	36
Model	Analysis and Diagnosis	37
2.7	Consistency and Robustness	38
2.8	Exploration and Validation of	
	Dynamical Features	40
Model	Use and Applications	43
2.9	Model Extensions and Refinements	43
2.10	Large-Scale Model Assessments	45
2.11	Questions of Design	46
2.12	Simplicity versus Complexity	47
Exercis	ses	49
Referen	nces	50
Further Reading 50		50
Chapt	er 3: Static Network Models	51

Chapter 3:	Static Network Models	51
Strategies of	Analysis	52
Interaction C	Graphs	53
3.1 Prop	erties of Graphs	54

3.2	Small-World Networks	58
Depen	dencies Among Network	
Compo	onents	62
3.3	Causality Analysis	62
3.4	Mutual Information	62
Bayesi	an Reconstruction of Interaction	
Netwo	rks	63
3.5	Application to Signaling Networks	66
3.6	Applications to Other Biological	
	Networks	69
Static I	Metabolic Networks and Their Analysis	69
3.7	Stoichiometric Networks	70
3.8	Variants of Stoichiometric Analysis	73
3.9	Metabolic Network Reconstruction	73
3.10	Metabolic Control Analysis	74
Exercis	ses	78
Refere	nces	80
Furthe	r Reading	82
Chant	or A. The Mathematics of	

Chapt	er 4: The Mathematics of	
	Biological Systems	83
Discret	te Linear Systems Models	85
4.1	Recursive Deterministic Models	85
4.2	Recursive Stochastic Models	88
Discret	te Nonlinear Systems	91
Contin	uous Linear Systems	93
4.3	Linear Differential Equations	94
4.4	Linearized Models	95
Contin	uous Nonlinear Systems	100
4.5	Ad hoc Models	101
4.6	Canonical Models	102
4.7	More Complicated Dynamical Systems Descriptions	110
Standa	rd Analyses of Biological	110
System	ns Models	110
4.8	Steady-State Analysis	110
4.9	Stability Analysis	115
4 10	Parameter Sensitivity	118

CONTENTS

4.11 Analysis of Systems Dynamics	119
Other Attractors	122
4.12 Limit Cycles	123
4.13 Chaotic Attractors	126
Exercises	128
References	132
Further Reading	133
Chapter 5: Parameter Estimation	135
Parameter Estimation for Linear Systems	136
51 Linear Regression Involving a	
Single Variable	136
5.2 Linear Regression Involving Several	
Variables	138
Parameter Estimation for Nonlinear Systems	141
5.3 Comprehensive Grid Search	143
5.4 Nonlinear Regression	145
5.5 Genetic Algorithms	146
5.6 Other Stochastic Algorithms	148
5.7 Typical Challenges	149
Parameter Estimation for Systems of	Enthe
Differential Equations	153
	160
Exercises	161
References	166
Further Reading	167
Chapter 6: Gene Systems	160
The Central Dogma	160
Key Properties of DNA and RNA	103
6.1 Chemical and Physical Features	171
6.2 Size and Organization of DNA	174
6.3 Genes and Noncoding DNA	175
6.4 Eukaryotic DNA Packing	178
6.5 Epigenetics	178
RNA Debemis v in Cardiomyocytes	178
6.6 Messenger RNA (mRNA)	179
6.7 Transfer RNA (tRNA)	182
6.8 Ribosomal RNA (rRNA)	182
6.9 Small RNAs	183
6.10 RNA Viruses	184
Gene Regulation	185
0.7	

6.11 The *lac* Operon

6.12 Modes of Regulation

186

187

6.13	Transcription Factors	188
6.14	Models of Gene Regulation	190
Measu	uring Gene Expression	191
Locali	zation of Gene Expression	194
Outloo	ok	196
Exerci	ses	196
Refere	nces	198
Furthe	er Reading	200
Chapt	er 7: Protein Systems	201
Chemi	cal and Physical Features of Proteins	202
7.1	Experimental Protein Structure Determination and Visualization	206
An Inc Functi	omplete Survey of the Roles and ons of Proteins	208
7.2	Enzymes	209
7.3	Transporters and Carriers	211
7.4	Signaling and Messenger Proteins	214
7.5	Proteins of the Immune System	215
7.6	Structure Proteins	216
Curren	t Challenges in Protein Research	218
7.7	Proteomics	218
7.8	Structure and Function Prediction	220
7.9	Localization	222
7.10	Protein Activity and Dynamics	224
Exercis	es	• 226
Referen	ices	228
Further	r Reading	230

Chan	tor 8. Motabolic Systems	221
cinap	ter o. Metabolic Systems	231
Bioch	emical Reactions	232
8.1	Background	232
8.2	Mathematical Formulation of	
	Elementary Reactions	234
8.3	Rate Laws	235
Pathw	yays and Pathway Systems	240
8.4	Biochemistry and Metabolomics	240
8.5	Resources for Computational	
	Pathway Analysis	241
8.6	Control of Pathway Systems	244
Metho	ods of Metabolomic Data Generation	246
8.7	Sampling, Extraction, and	
	Separation Methods	247
8.8	Detection Methods	247
8.9	Flux Analysis	249

CONTENTS

X

From I	Data to Systems Models	250
8.10	Case Study 1: Analyzing Metabolism	
	in an Incompletely Characterized	
	Organism	250
8.11	Case Study 2: Metabolic Network	
ant	Analysis	251
8.12	Case Study 3: Extraction of Dynamic	051
г .	Models from Experimental Data	251
Exercis	es	252
Referen	nces	254
Further	Reading	255
Chapte	er 9: Signaling Systems	257
Static N	Aodels of Signal Transduction	
Networ	ks	259
9.1	Boolean Networks	259
9.2	Network Inference	261
Signal	Fransduction Systems Modeled with	
Differen	ntial Equations	261
9.3	Bistability and Hysteresis	261
9.4	Two-Component Signaling Systems	266
9.5	Mitogen-Activated Protein Kinase	
	Cascades	270
9.6	Adaptation	273
9.7	Other Signaling Systems	274
Exercis	es	278
Referen	ices	279
Further	reading	281
Chapte	er 10: Population Systems	283
Populat	tion Growth	283
10.1	Traditional Models of	
	Population Growth	284
10.2	More Complex Growth Phenomena	286
Populat	tion Dynamics Under External	
Perturb	ations	288
Analysis of Subpopulations		289

Interacting Populations

Exercises

References

Further reading

10.3 General Modeling Strategy

10.5 More Complex Models of Population Dynamics

10.4 Phase-Plane Analysis

Chapter 11: Integrative Analysis of Genome, Protein, and	
Metabolite Data: A Case	
Study in Yeast	303
On the Origin of Models	304
A Brief Review of the Heat Stress	
Response in Yeast	306
11.1 The Trehalose Cycle	308
Modeling Analysis of the Trehalose Cycle	310
11.2 Design and Diagnosis of a Metabolic	
Pathway Model	310
11.3 Analysis of Heat Stress	312
11.4 Accounting for Glucose Dynamics	314
11.5 Gene Expression	315
Multiscale Analysis	318
11.6 In Vivo NMR Profiles	318
11.7 Multiscale Model Design	320
11.8 The Trehalase Puzzle	324
Concluding Comments	327
Exercises	328
References	329
Further reading	

Chapter 12: Physiological Modeling: The Heart as an Example 331

Hierard	chy of Scales and Modeling Approaches	332
12.1	Basics of Heart Anatomy	333
12.2	Modeling Targets at the Organ Level	334
12.3	Modeling Targets at the Tissue Level	335
12.4	Modeling Targets at the Cell Level	337
Simple	Models of Oscillations	339
12.5	Black-Box Models of Oscillations	339
12.6	Summary of Black-Box Oscillation Models	342
12.7	From a Black Box to Meaningful Models	343
Electro	chemistry in Cardiomyocytes	345
12.8	Biophysical Description of Electrochemical Processes at the Membrane of Cardiomyocytes	347
12.9	Resting Potentials and Action Potentials	348
12.10	Models of Action Potentials	350
12.11	Repeated Heartbeats	354
Issues o	of a Failing Heart	355

12.12 Modeling Heart Function and Failure Based on Molecular Events	356
Outlook for Physiological Multiscale	
Modeling	361
Exercises	362
References	365
Further Reading	366
T res and	

Chapter 13:	Systems Biology in Medicine
	and Drug Development

Chup	and Drug Development	369
Are vo	u Unique?	369
13.1	Biological Variability and Disease	369
13.2	Modeling Variability and Disease	370
Person	alized Medicine and Predictive Health	372
13.3	Data Needs and Biomarkers	373
13.4	Personalizing Mathematical Models	374
The Dr	rug Development Process	378
The Ro	le of Systems Biology in	
Drug [Development	380
13.5	Computational Target and Lead	
	Identification	381
13.6	Receptor Dynamics	382
13.7	Pharmacokinetic Modeling	385
13.8	Pathway Screening with Dynamic	
	Models	390
13.9	Emerging Roles of Systems Biology	
	in Drug Development	393
Exercis	es	394
Referen	nces	395
Further Reading		396

Chapter 14: Design of Biological Systems	399
Natural Design of Biological Systems	400

	g	100
14.1	The Search for Structural Patterns	400
14.2	Network Motifs	402

14.3	Design Principles	404
14.4	Operating Principles	406
Goal-C	Driented Manipulations and Synthetic	
Design	of Biological Systems	407
14.5	Metabolic Engineering	407
14.6	Synthetic Biology	408
Case S	tudies of Synthetic Biological	
System	as Designs	411
14.7	Elementary Mode Analysis in	
	Metabolic Engineering	411
14.8	Drug Development	414
14.9	Gene Circuits	415
The Future Has Begun		419
Exercises		419
References		421
Further Reading		423

Chapter 15:	Emerging Topics in	
	Systems Biology	
	1	

Emerg	ing Applications	426
15.1	From Neurons to Brains	426
15.2	Complex Diseases, Inflammation, and Trauma	428
15.3	Organisms and their Interactions with the Environment	432
Modeli	ng Needs	435
15.4	Multiscale Modeling	436
15.5	A Data-Modeling Pipeline	437
Toward	l a Theory of Biology or Several	
Theorie	es?	439
Referen	nces	441
Further Reading		443
Glossa	ry	445

Glossary	
Index	

(

xi