
Brief Contents

PART I THE MOLECULAR DESIGN OF LIFE

Chapter 1 Prelude 3	
---------------------	--

- Chapter 2 Biochemical Evolution 19
- Chapter 3 Protein Structure and Function 41
- Chapter 4 Exploring Proteins 77
- Chapter 5 RNA, DNA, and the Flow of Genetic Information 117
- Chapter 6 Exploring Genes 143
- Chapter 7 Exploring Evolution (including Bioinformatics 171
- Chapter 8 Enzymes: Basic Concepts and Kinetics 189
- Chapter 9 Catalytic Strategies 227
- Chapter 10 Regulatory Strategies: Enzymes and Hemoglobin 261
- Chapter 11 Carbohydrates 295
- Chapter 12 Lipids and Cell Membranes 319
- Chapter 13 Membrane Channels and Pumps 345

PART II TRANSDUCING AND STORING ENERGY

- Chapter 14 Metabolism: Basic Concepts and Design 373
- Chapter 15 Signal-Transduction Pathways: An Introduction to Information Metabolism 395
- Chapter 16 Glycolysis and Gluconeogenesis 425
- Chapter 17 The Citric Acid Cycle 465

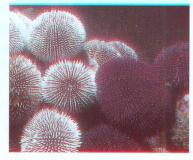
Chapter 18	Oxidative Phosphorylation 491
Chapter 19	The Light Reactions of Photosynthesis 527
Chapter 20	The Calvin Cycle and the Pentose Phosphate Pathway 551
Chapter 21	Glycogen Metabolism 577
Chapter 22	Fatty Acid Metabolism 601
Chapter 23	Protein Turnover and Amino Acid Catabolism 633

PART III SYNTHESIZING THE MOLECULES OF LIFE

- Chapter 24 The Biosynthesis of Amino Acids 665
- Chapter 25 Nucleotide Biosynthesis 693
- Chapter 26 The Biosynthesis of Membrane Lipids and Steroids 715
- Chapter 27 DNA Replication, Recombination, and Repair 745
- Chapter 28 RNA Synthesis and Splicing 781
- Chapter 29 Protein Synthesis 813
- Chapter 30 The Integration of Metabolism 845
- Chapter 31 The Control of Gene Expression 867

PART IV RESPONDING TO ENVIRONMENTAL CHANGES

Chapter 32Sensory SystemsChapter 33The Immune SystemChapter 34Molecular Motors


Contents

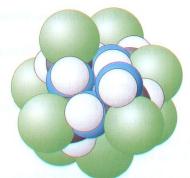
Preface	v
Tools and Techniques	x
Clinical Applications	xi
Molecular Evolution	xii
Acknowledgments	XV
Acknowledgments	XV

PART I THE MOLECULAR DESIGN OF LIFE

CHAPTER 1 Prelude: Biochemistry and the Genomic Revolution
1.1 DNA Illustrates the Relation Between Form and Function
1.1.1 DNA Is Constructed from Four Building Blocks
1.1.2 Two Single Strands of DNA Combine to Form a Double Helix
1.1.3 RNA Is an Intermediate in the Flow of Genetic Information
1.1.4 Proteins, Encoded by Nucleic Acids, Perform Most Cell Functions
1.2 Biochemical Unity Underlies Biological Diversity

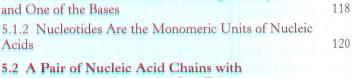
1.3 Chemical Bonds in Biochemistry

CHAPTER 2 Biochemical Evolution	19
Appendix: Depicting Molecular Structures	16
1.4 Biochemistry and Human Biology	15
1.3.4 Protein Folding Can Be Understood in Terms of Free-Energy Changes	14
1.3.3 Entropy and the Laws of Thermodynamics	11
1.3.2 The Properties of Water Affect the Bonding Abilities of Biomolecules	10
1.3.1 Reversible Interactions of Biomolecules Are Mediated by Three Kinds of Noncovalent Bonds	ç

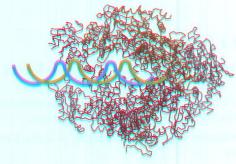

2.1 Key Organic Molecules Are Used by Living	
Systems	20
2.1.1 Many Components of Biochemical Macromolecules Can Be Produced in Simple, Prebiotic Reactions	20
2.1.2 Uncertainties Obscure the Origins of Some Key Biomolecules	21

2.2 Evolution Requires Reproduction, Variation, and Selective Pressure	21
2.2.1 The Principles of Evolution Can Be Demonstrated in Vitro	
2.2.2 RNA Molecules Can Act As Catalysts	22
	23
2.2.3 Amino Acids and Their Polymers Can Play Biosynthetic and Catalytic Roles	23
2.2.4 RNA Template-Directed Polypeptide Synthesis Links the RNA and Protein Worlds	24
2.2.5 The Genetic Code Elucidates the Mechanisms of Evolution	25
2.2.6 Transfer RNAs Illustrate Evolution by Gene Duplication	26
2.2.7 DNA Is a Stable Storage Form for Genetic Information	26
2.3 Energy Transformations Are Necessary	
to Sustain Living Systems	28
2.3.1 ATP, a Common Currency for Biochemical Energy, Can Be Generated Through the Breakdown of	
Organic Molecules	28
2.3.2 Cells Were Formed by the Inclusion of Nucleic Acids Within Membranes	29
2.3.3 Compartmentalization Required the Development of Ion Pumps	30
2.3.4 Proton Gradients Can Be Used to Drive the Synthesis of ATP	31
2.3.5 Molecular Oxygen, a Toxic By-Product of Some Photosynthetic Processes, Can Be Utilized for Metabolic	
Purposes	32
2.4 Cells Can Respond to Changes in Their Environments	33
2.4.1 Filamentous Structures and Molecular Motors	00
Enable Intracellular and Cellular Movement	34
2.4.2 Some Cells Can Interact to Form Colonies with Specialized Functions	35
2.4.3 The Development of Multicellular Organisms Requires the Orchestrated Differentiation of Cells	36
2.4.4 The Unity of Biochemistry Allows Human Biology to Be Effectively Probed Through Studies of Other Organisms	37
	_
CHAPTER 3 Protein Structure and Function	41
3.1 Protoins Are Built from a Demantaine of 20	

3.1 Proteins Are Built from a Repertoire of 20 Amino Acids	43
3.2 Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains	51
3.2.1 Proteins Have Unique Amino Acid Sequences That Are Specified by Genes	53
3.2.2 Polypeptide Chains Are Flexible Yet Conformationally Restricted	54


xxii CONTENTS

3.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such as the Alpha Helix, the Beta Sheet, and Turns and Loops



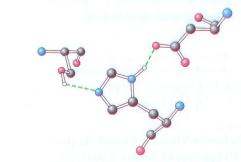
3.3.1 The Alpha Helix Is a Coiled Structure Stabilized by Intrachain Hydrogen Bonds	56
3.3.2 Beta Sheets Are Stabilized by Hydrogen Bonding Between Polypeptide Strands	58
3.3.3 Polypeptide Chains Can Change Direction by Making Reverse Turns and Loops	60
3.4 Tertiary Structure: Water-Soluble Proteins Fold into Compact Structures with Nonpolar Cores	61
3.5 Quaternary Structure: Polypeptide Chains Can Assemble into Multisubunit Structures	63
3.6 The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure	64
3.6.1 Amino Acids Have Different Propensities for Forming Alpha Helices, Beta Sheets, and Beta Turns	66
3.6.2 Protein Folding Is a Highly Cooperative Process	68
3.6.3 Proteins Fold by Progressive Stabilization of Intermediates Rather Than by Random Search	68
3.6.4 Prediction of Three-Dimensional Structure from Sequence Remains a Great Challenge	69
3.6.5 Protein Modification and Cleavage Confer New Capabilities	69
Appendix: Acid–Base Concepts	73
CHAPTER 4 Exploring Proteins	77
4.0.1 The Proteome Is the Functional Representation	
of the Genome	78
4.1 The Purification of Proteins Is an Essential First Step in Understanding Their Function	78
4.1.1 The Assay: How Do We Recognize the Protein That We Are Looking For?	78
4.1.2 Proteins Must Be Released from the Cell to Be Purified	79
4.1.3 Proteins Can Be Purified According to Solubility, Size, Charge, and Binding Affinity	80
4.1.4 Proteins Can Be Separated by Gel Electrophoresis and Displayed	83
4.1.5 A Protein Purification Scheme Can Be Quantitatively Evaluated	86
4.1.6 Ultracentrifugation Is Valuable for Separating Biomolecules and Determining Their Masses	87

4.1.7 The Mass of a Protein Can Be Precisely Determined by Mass Spectrometry	89
4.2 Amino Acid Sequences Can Be Determined by Automated Edman Degradation	91
4.2.1 Proteins Can Be Specifically Cleaved into Small Peptides to Facilitate Analysis	94
4.2.2 Amino Acid Sequences Are Sources of Many Kinds of Insights	96
4.2.3 Recombinant DNA Technology Has Revolutionized Protein Sequencing	97
4.3 Immunology Provides Important Techniques with Which to Investigate Proteins	98
4.3.1 Antibodies to Specific Proteins Can Be Generated	98
4.3.2 Monoclonal Antibodies with Virtually Any Desired Specificity Can Be Readily Prepared	100
4.3.3 Proteins Can Be Detected and Quantitated by Using an Enzyme-Linked Immunosorbent Assay	101
4.3.4 Western Blotting Permits the Detection of Proteins Separated by Gel Electrophoresis	103
4.3.5 Fluorescent Markers Make Possible the Visualization of Proteins in the Cell	103
4.4 Peptides Can Be Synthesized by Automated Solid-Phase Methods	104
4.5 Three-Dimensional Protein Structure Can Be Determined by NMR Spectroscopy and X-Ray Crystallography	107
4.5.1 Nuclear Magnetic Resonance Spectroscopy Can Reveal the Structures of Proteins in Solution	107
4.5.2 X-Ray Crystallography Reveals Three-Dimensional Structure in Atomic Detail	110
CHAPTER 5 DNA, RNA, and the Flow of Genetic Information	117
 5.1 A Nucleic Acid Consists of Four Kinds of Bases Linked to a Sugar-Phosphate Backbone 5.1.1 RNA and DNA Differ in the Sugar Component 	118

Complementary Sequences Can Form a **Double-Helical Structure**

5.2.1 The Double Helix Is Stabilized by Hydrogen Bonds and Hydrophobic Interactions	121
5.2.2 The Double Helix Facilitates the Accurate	
Transmission of Hereditary Information	123
5.2.3 The Double Helix Can Be Reversibly Melted	124
5.2.4 Some DNA Molecules Are Circular and Supercoiled	125
5.2.5 Single-Stranded Nucleic Acids Can Adopt	120
Elaborate Structures	126
5.3 DNA Is Replicated by Polymerases That Take	
Instructions from Templates	127
5.3.1 DNA Polymerase Catalyzes Phosphodiester-Bond Formation	127
5.3.2 The Genes of Some Viruses Are Made of RNA	127
	120
5.4 Gene Expression Is the Transformation of DNA Information into Functional Molecules	129
5.4.1 Several Kinds of RNA Play Key Roles in Gene	
Expression	129
5.4.2 All Cellular RNA Is Synthesized by RNA	
Polymerases	130
5.4.3 RNA Polymerases Take Instructions from DNA Templates	131
5.4.4 Transcription Begins Near Promoter Sites and Ends at Terminator Sites	131
5.4.5 Transfer RNA Is the Adaptor Molecule in Protein	
Synthesis	132
5.5 Amino Acids Are Encoded by Groups of Three	
Bases Starting from a Fixed Point	133
5.5.1 Major Features of the Genetic Code	134
5.5.2 Messenger RNA Contains Start and Stop Signals for Protein Synthesis	135
5.5.3 The Genetic Code Is Nearly Universal	135
	100
5.6 Most Eukaryotic Genes Are Mosaics of Introns and Exons	136
5.6.1 RNA Processing Generates Mature RNA	137
5.6.2 Many Exons Encode Protein Domains	137
CHAPTER 6 Exploring Genes	143
6.1 The Basic Tools of Gene Exploration	144
6.1.1 Restriction Enzymes Split DNA into Specific Fragments	144
6.1.2 Restriction Fragments Can Be Separated by Gel	TTT
Electrophoresis and Visualized	145
6.1.3 DNA Is Usually Sequenced by Controlled Termination of Replication (Sanger Dideoxy Method)	146
6.1.4 DNA Probes and Genes Can Be Synthesized by Automated Solid-Phase Methods	148

utomated Solid-Phase Methods	148
1.5 Selected DNA Sequences Can Be Greatly Mplified by the Polymerase Chain Reaction	149
.1.6 PCR Is a Powerful Technique in Medical Diagnostics, Forensics, and Molecular Evolution	151
2 Recombinant DNA Technology Has	


151

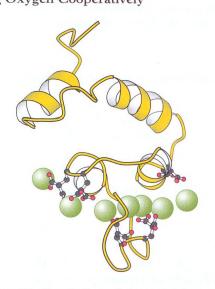
6.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology

Tools in Forming Recombinant DNA Molecules	152
6.2.2 Plasmids and Lambda Phage Are Choice Vectors	104
for DNA Cloning in Bacteria	153
6.2.3 Specific Genes Can Be Cloned from Digests of Genomic DNA	155
6.2.4 Long Stretches of DNA Can Be Efficiently Analyzed by Chromosome Walking	156
6.3 Manipulating the Genes of Eukaryotes	157
6.3.1 Complementary DNA (cDNA) Prepared from mRNA Can Be Expressed in Host Cells	157
6.3.2 Gene-Expression Levels Can Be Comprehensively Examined	159
6.3.3 New Genes Inserted into Eukaryotic Cells Can Be Efficiently Expressed	160
6.3.4 Transgenic Animals Harbor and Express Genes That Were Introduced into Their Germ Lines	161
6.3.5 Gene Disruption Provides Clues to Gene Function	162
6.3.6 Tumor-Inducing Plasmids Can Be Used to Introduce New Genes into Plant Cells	163
6.4 Novel Proteins Can Be Engineered by Site-Specific Mutagenesis	164
6.4.1 Proteins with New Functions Can Be Created Through Directed Changes in DNA	164
6.4.2 Recombinant DNA Technology Has Opened New Vistas	165
CHAPTER 7 Exploring Evolution (Including Bioinformatics)	171
7.1 Homologs Are Descended from a Common Ancestor	173
7.2 Statistical Analysis of Sequence Alignments Can Detect Homology	173
7.2.1. The Statistical Significance of Alignments Can Be Estimated by Shuffling	175
7.2.2. Distant Evolutionary Relationships Can Be Detected Through the Use of Substitution Matrices	177
7.2.3. Databases Can Be Searched to Identify Homologous Sequences	178
7.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary Relationships	179

Contents -

xxiii

7.3.1 Tertiary Structure Is More Conserved Than Primary Structure


xxiv CONTENTS

7.3.2 Knowledge of Three-Dimensional Structures Can Aid in the Evaluation of Sequence Alignments	180
7.3.3 Repeated Motifs Can Be Detected by Aligning Sequences with Themselves	181
7.3.4 Convergent Evolution: Common Solutions to Biochemical Challenges	182
7.3.5 Comparison of RNA Sequences Can Be a Source of Insight into Secondary Structures	182
7.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information	183
7.5 Modern Techniques Make the Experimental Exploration of Evolution Possible	184
7.5.1 Ancient DNA Can Sometimes Be Amplified and Sequenced	184
7.5.2 Molecular Evolution Can Be Examined Experimentally	184
CHAPTER 8 Enzymes: Basic Concepts and Kinetics	189
8.1 Enzymes Are Powerful and Highly Specific	100
Catalysts	190
8.1.1 Many Enzymes Require Cofactors for Activity	191
8.1.2 Enzymes May Transform Energy from One Form into Another	192
8.1.3 Enzymes Are Classified on the Basis of the Types of Reaction That They Catalyze	192
8.2 Free Energy Is a Useful Thermodynamic	
Function for Understanding Enzymes	193
8.2.1 The Free-Energy Change Provides Information About the Spontaneity but Not the Rate of a Reaction	193
8.2.2 The Standard Free-Energy Change of a Reaction Is Related to the Equilibrium Constant	194
8.2.3 Enzymes Alter Only the Reaction Rate and Not the Reaction Equilibrium	196
8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State	196
• • •	
bodod bodod	

8.2.2 The Standard Free-Energy Change of a Reaction		Resid
Is Related to the Equilibrium Constant	194	9.1.2
8.2.3 Enzymes Alter Only the Reaction Rate and Not		Linke
the Reaction Equilibrium	196	9.1.3
8.3 Enzymes Accelerate Reactions by Facilitating		Includ
the Formation of the Transition State	196	9.1.4
		Enzyr
		9.1.5
		Site-L
		9.1.6
		Other
ϕ ϕ ϕ		9.1.7
		9.2 N Anhy
		9.2.1 Essent
8.3.1 The Formation of an Enzyme–Substrate Complex		9.2.2
Is the First Step in Enzymatic Catalysis	197	9.2.3
8.3.2 The Active Sites of Enzymes Have Some Common		of the
Features	198	9.2.4
8.4. The Michaelis-Menten Model Accounts for		Active
the Kinetic Properties of Many Enzymes	200	9.3 R
8.4.1 The Significance of $K_{\rm M}$ and $V_{\rm max}$ Values	203	Speci
8.4.2 Kinetic Perfection in Enzymatic Catalysis:		9.3.1
The k_{cat}/K_{M} Criterion	205	from 1

8.4.3 Most Biochemical Reactions Include Multiple Substrates	207
8.4.4 Allosteric Enzymes Do Not Obey	207
Michaelis-Menten Kinetics	208
8.5 Enzymes Can Be Inhibited by Specific	
Molecules	209
8.5.1 Competitive and Noncompetitive Inhibition Are Kinetically Distinguishable	210
8.5.2 Irreversible Inhibitors Can Be Used to Map	
the Active Site	210
8.5.3 Transition-State Analogs Are Potent Inhibitors of Enzymes	213
8.5.4 Catalytic Antibodies Demonstrate the Importance of Selective Binding of the Transition	
State to Enzymatic Activity 8.5.5 Penicillin Irreversibly Inactivates a Key Enzyme	213
in Bacterial Cell-Wall Synthesis	214
8.6 Vitamins Are Often Precursors to Coenzymes	216
8.6.1 Water-Soluble Vitamins Function As	
Coenzymes 8.6.2 Fat-Soluble Vitamins Participate in Diverse	217
Processes Such As Blood Clotting and Vision	219
Appendix: V_{max} and K_{M} Can Be Determined by	
Double-Reciprocal Plots	221
CHAPTER 9 Catalytic Strategies	227
9.0.1 A Few Basic Catalytic Principles Are Used by Many Enzymes	228
9.1 Proteases: Facilitating a Difficult Reaction	228
9.1.1 Chymotrypsin Possesses a Highly Reactive Serine Residue	229
9.1.2 Chymotrypsin Action Proceeds in Two Steps Linked by a Covalently Bound Intermediate	230
9.1.3 Serine Is Part of a Catalytic Triad That Also	
Includes Histidine and Aspartic Acid	231
9.1.4 Catalytic Triads Are Found in Other Hydrolytic Enzymes	234
9.1.5 The Catalytic Triad Has Been Dissected by	404
Site-Directed Mutagenesis	236
9.1.6 Cysteine, Aspartyl, and Metalloproteases Are	026
Other Major Classes of Peptide-Cleaving Enzymes 9.1.7 Protease Inhibitors Are Important Drugs	236 238
	230
9.2 Making a Fast Reaction Faster: Carbonic Anhydrases	239
9.2.1 Carbonic Anhydrase Contains a Bound Zinc Ion	
Essential for Catalytic Activity	240
9.2.2 Catalysis Entails Zinc Activation of Water	241
9.2.3 A Proton Shuttle Facilitates Rapid Regeneration of the Active Form of the Enzyme	242
9.2.4 Convergent Evolution Has Generated Zinc-Based	
Active Sites in Different Carbonic Anhydrases	244
9.3 Restriction Enzymes: Performing Highly Specific DNA-Cleavage Reactions	245
9.3.1 Cleavage Is by In-Line Displacement of 3' Oxygen	245
from Phosphorus by Magnesium Activated Water	246

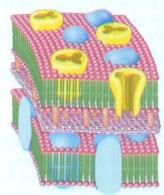
9.3.2 Restriction Enzymes Require Magnesium for Catalytic Activity	248
9.3.3 The Complete Catalytic Apparatus Is Assembled Only Within Complexes of Cognate DNA Molecules, Ensuring Specificity	248
9.3.4 Type II Restriction Enzymes Have a Catalytic Core in Common and Are Probably Related by Horizontal Gene Transfer	251
9.4 Nucleoside Monophosphate Kinases: Catalyzing Phosphoryl Group Exchange Between Nucleotides Without Promoting Hydrolysis	252
9.4.1 NMP Kinases Are a Family of Enzymes Containing P-Loop Structures	253
9.4.2 Magnesium (or Manganese) Complexes of Nucleotide Triphosphates Are the True Substrates for Essentially All NTP-Dependent Enzymes	254
9.4.3 ATP Binding Induces Large Conformational Changes	255
9.4.4 P-Loop NTPase Domains Are Present in a Range of Important Proteins	255
CHAPTER 10 Regulatory Strategies: Enzymes	
and Hemoglobin	261
and Hemoglobin 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	261 262
10.1 Aspartate Transcarbamoylase Is Allosterically	
 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 10.1.1 ATCase Consists of Separable Catalytic and 	262
 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 10.1.1 ATCase Consists of Separable Catalytic and Regulatory Subunits 10.1.2 Allosteric Interactions in ATCase Are 	262 263
 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 10.1.1 ATCase Consists of Separable Catalytic and Regulatory Subunits 10.1.2 Allosteric Interactions in ATCase Are Mediated by Large Changes in Quaternary Structure 10.1.3 Allosterically Regulated Enzymes Do Not 	262 263 264
 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 10.1.1 ATCase Consists of Separable Catalytic and Regulatory Subunits 10.1.2 Allosteric Interactions in ATCase Are Mediated by Large Changes in Quaternary Structure 10.1.3 Allosterically Regulated Enzymes Do Not Follow Michaelis-Menten Kinetics 10.1.4 Allosteric Regulators Modulate the T-to-R 	262 263 264 267
 10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway 10.1.1 ATCase Consists of Separable Catalytic and Regulatory Subunits 10.1.2 Allosteric Interactions in ATCase Are Mediated by Large Changes in Quaternary Structure 10.1.3 Allosterically Regulated Enzymes Do Not Follow Michaelis-Menten Kinetics 10.1.4 Allosteric Regulators Modulate the T-to-R Equilibrium 10.1.5 The Concerted Model Can Be Formulated in 	 262 263 264 267 267

10.2.2 Oxygen Binding Markedly Changes the	
Quaternary Structure of Hemoglobin 10.2.3 Tuning the Oxygen Affinity of Hemoglobin:	271
The Effect of 2,3-Bisphosphoglycerate 10.2.4 The Bohr Effect: Hydrogen Ions and Carbon	272
Dioxide Promote the Release of Oxygen	273
10.3 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental Stages	274
10.4 Covalent Modification Is a Means of	
Regulating Enzyme Activity	275
10.4.1 Phosphorylation Is a Highly Effective Means of Regulating the Activities of Target Proteins	276
10.4.2 Cyclic AMP Activates Protein Kinase A by Altering the Quaternary Structure	278
10.4.3 ATP and the Target Protein Bind to a Deep Cleft in the Catalytic Subunit of Protein Kinase A	279
10.5 Many Enzymes Are Activated by Specific Proteolytic Cleavage	280
10.5.1 Chymotrypsinogen Is Activated by Specific Cleavage of a Single Peptide Bond	281
10.5.2 Proteolytic Activation of Chymotrypsinogen Leads to the Formation of a Substrate-Binding Site	281
10.5.3 The Generation of Trypsin from Trypsinogen Leads to the Activation of Other Zymogens	282
10.5.4 Some Proteolytic Enzymes Have Specific Inhibitors	283
10.5.5 Blood Clotting Is Accomplished by a Cascade of Zymogen Activations	284
10.5.6 Fibrinogen Is Converted by Thrombin into a	
Fibrin Clot 10.5.7 Prothrombin Is Readied for Activation by a	285
Vitamin K-Dependent Modification	287
10.5.8 Hemophilia Revealed an Early Step in Clotting	288
10.5.9 The Clotting Process Must Be Precisely Regulated	200
Regulated	289
CHAPTER 11 Carbohydrates	295
11.1 Monosaccharides Are Aldehydes or Ketones with Multiple Hydroxyl Groups	296
11.1.1 Pentoses and Hexoses Cyclize to Form Furanose	290
and Pyranose Rings	298
11.1.2 Conformation of Pyranose and Furanose Rings	300
11.1.3 Monosaccharides Are Joined to Alcohols and	

Contents - xxv -

11.2 Complex Carbohydrates Are Formed by Linkage of Monosaccharides	301
11.2.1 Sucrose, Lactose, and Maltose Are the Common Disaccharides	302
11.2.2 Glycogen and Starch Are Mobilizable Stores of Glucose	302
11.2.3 Cellulose, the Major Structural Polymer of Plants, Consists of Linear Chains of Glucose Units	303
11.2.3 Cellulose, the Major Structural Polymer of	

300


Amines Through Glycosidic Bonds

11.2.4 Glycosaminoglycans Are Anionic Polysaccharide Chains Made of Repeating Disaccharide Units 304

11.2.5 Specific Enzymes Are Responsible for Oligosaccharide Assembly	304
11.3 Carbohydrates Can Be Attached to Proteins to Form Glycoproteins	306
11.3.1 Carbohydrates May Be Linked to Proteins Through Asparagine (<i>N</i> -Linked) or Through Serine or Threonine (<i>O</i> -Linked) Residues	306
11.3.2 Protein Glycosylation Takes Place in the Lumen of the Endoplasmic Reticulum and the Golgi Complex	307
11.3.3 <i>N</i> -Linked Glycoproteins Acquire Their Initial Sugars from Dolichol Donors in the Endoplasmic Reticulum	308
11.3.4 Transport Vesicles Carry Proteins from the Endoplasmic Reticulum to the Golgi Complex for Further Glycosylation and Sorting	309
11.3.5 Mannose 6-phosphate Targets Lysosomal Enzymes to Their Destinations	310
11.3.6 Glucose Residues Are Added and Trimmed to Aid in Protein Folding	310
11.3.7 Oligosaccharides Can Be "Sequenced"	311
11.4 Lectins Are Specific Carbohydrate-Binding	
Proteins	312
11.4.1 Lectins Promote Interactions Between Cells	313
11.4.2 Influenza Virus Binds to Sialic Acid Residues	314

CHAPTER 12 Lipids and Cell Membranes	319
12.1 Many Common Features Underlie the Diversity of Biological Membranes	320

12.2.1 The Naming of Fats	320
12.2.2 Fatty Acids Vary in Chain Length and Degree of Unsaturation	321
12.3 There Are Three Common Types of Membrane Lipids	322
12.3.1 Phospholipids Are the Major Class of Membrane Lipids	322
12.3.2 Archaeal Membranes Are Built from Ether Lipids with Branched Chains	324
12.3.3 Membrane Lipids Can Also Include Carbohydrate Moieties	324

12.3.4 Cholesterol Is a Lipid Based on a Steroid Nucleus	325
12.3.5 A Membrane Lipid Is an Amphipathic Molecule Containing a Hydrophilic and a Hydrophobic Moiety	325
12.4 Phospholipids and Glycolipids Readily Form Bimolecular Sheets in Aqueous Media	326
12.4.1 Lipid Vesicles Can Be Formed from Phospholipids	327
12.4.2 Lipid Bilayers Are Highly Impermeable to Ions and Most Polar Molecules	328
12.5 Proteins Carry Out Most Membrane Processes	329
12.5.1 Proteins Associate with the Lipid Bilayer in a Variety of Ways	329
12.5.2 Proteins Interact with Membranes in a Variety of Ways	330
12.5.3 Some Proteins Associate with Membranes Through Covalently Attached Hydrophobic Groups	333
12.5.4 Transmembrane Helices Can Be Accurately Predicted from Amino Acid Sequences	334
12.6 Lipids and Many Membrane Proteins Diffuse Rapidly in the Plane of the Membrane	335
12.6.1 The Fluid Mosaic Model Allows Lateral Movement but Not Rotation Through the Membrane	336
12.6.2 Membrane Fluidity Is Controlled by Fatty Acid Composition and Cholesterol Content	337
12.6.3 All Biological Membranes Are Asymmetric	338
12.7 Eukaryotic Cells Contain Compartments Bounded by Internal Membranes	338
12.7.1 Proteins Are Targeted to Specific Compartments by Signal Sequences	339
12.7.2 Membrane Budding and Fusion Underlie Several Important Biological Processes	341
	-
CHAPTER 13 Membrane Channels and Pumps	345
13.1 The Transport of Molecules Across a Membrane May Be Active or Passive	346
13.1.1 Many Molecules Require Protein Transporters to Cross Membranes	346
13.1.2 Free Energy Stored in Concentration Gradients Can Be Quantified	347
13.2 A Family of Membrane Proteins Uses ATP Hydrolysis to Pump Ions Across Membranes	347
13.2.1 The Sarcoplasmic Reticulum Ca ²⁺ ATPase Is an Integral Membrane Protein	348
13.2.2 P-Type ATPases Are Evolutionarily Conserved and Play a Wide Range of Roles	350
13.2.3 Digitalis Specifically Inhibits the Na ⁺ -K ⁺ Pump by Blocking Its Dephosphorylation	350

13.3 Multidrug Resistance and Cystic Fibrosis Highlight a Family of Membrane Proteins with ATP-Binding Cassette Domains

Contents XXV	11
14.1.5 Phosphoryl Transfer Potential Is an Important Form of Cellular Energy Transformation	379
14.2 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	380
14.2.1 High Phosphoryl Transfer Potential Compounds Can Couple Carbon Oxidation to ATP Synthesis	381
14.2.2 Ion Gradients Across Membranes Provide an Important Form of Cellular Energy That Can Be Coupled to ATP Synthesis	382
14.2.3 Stages in the Extraction of Energy from Foodstuffs	382
14.3 Metabolic Pathways Contain Many Recurring Motifs	383
14.3.1 Activated Carriers Exemplify the Modular Design and Economy of Metabolism	383
14.3.2 Key Reactions Are Reiterated Throughout Metabolism	386
14.3.3 Metabolic Processes Are Regulated in Three Principal Ways	390
14.3.4 Evolution of Metabolic Pathways	391
CHAPTER 15 Signal-Transduction Pathways: An Introduction to Information Metabolism	395
15.0.1 Signal Transduction Depends on Molecular Circuits: An Overview	396
15.1 Seven-Transmembrane-Helix Receptors Chang Conformation in Response to Ligand Binding and	ţe
Activate G Proteins 15.1.1 Ligand Binding to 7TM Receptors Leads to the	398
Activation of G Proteins 15.1.2 G Proteins Cycle Between GDP- and	399
GTP-Bound Forms 15.1.3 Activated G Proteins Transmit Signals by	399
Binding to Other Proteins 15.1.4 G Proteins Spontaneously Reset Themselves	401
Through GTP Hydrolysis 15.1.5 Cyclic AMP Stimulates the Phosphorylation	402
of Many Target Proteins by Activating Protein Kinase A	403
15.2 The Hydrolysis of Phosphatidyl Inositol Bisphosphate by Phospholipase C Generates Two	
Messengers 15.2.1 Inositol 1,4,5-trisphosphate Opens Channels	403
to Release Calcium Ions from Intracellular Stores 15.2.2 Diacylglycerol Activates Protein Kinase C,	405
Which Phosphorylates Many Target Proteins	406
15.3 Calcium Ion Is a Ubiquitous Cytosolic Messenger	408
15.3.1 Ionophores Allow the Visualization of Changes in Calcium Concentration	408
15.3.2 Calcium Activates the Regulatory Protein Calmodulin, Which Stimulates Many Enzymes and Tranporters	410
15.4 Some Receptors Dimerize in Response to Ligar Binding and Signal by Cross-Phosphorylation	

The second second

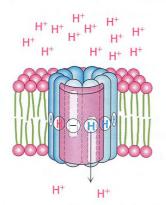
13.4 Secondary Transporters Use One Concentration Gradient to Power the Formation	
of Another	352
13.5 Specific Channels Can Rapidly Transport	
lons Across Membranes	353
13.5.1 Patch-Clamp Conductance Measurements Reveal the Activities of Single Channels	354
13.5.2 Ion-Channel Proteins Are Built of Similar Units	355
13.5.3 Action Potentials Are Mediated by Transient Changes in Na ⁺ and K ⁺ Permeability	357
13.5.4 The Sodium Channel Is an Example of a Voltage-Gated Channel	358
13.5.5 Potassium Channels Are Homologous to the Sodium Channel	359
13.5.6 The Structure of a Potassium Channel Reveals the Basis of Rapid Ion Flow with Specificity	359
13.5.7 The Structure of the Potassium Channel Explains Its Rapid Rates of Transport	362
13.5.8 A Channel Can Be Inactivated by Occlusion of the Pore: The Ball-and-Chain Model	363
13.6 Gap Junctions Allow Ions and Small Molecules to Flow Between Communicating Cells	363

PART II TRANSDUCING AND STORING ENERGY

CHAPTER 14 Metabolism: Basic Concepts and Design	373
14.0.1 Cells Transform Different Types of Energy	374
14.1 Metabolism Is Composed of Many Coupled, Interconnecting Reactions	374
14.1.1 A Thermodynamically Unfavorable Reaction Can Be Driven by a Favorable One	375
14.1.2 ATP Is the Universal Currency of Free Energy in Biological Systems	376
14.1.3 ATP Hydrolysis Drives Metabolism by Shifting the Equilibrium of Coupled Reactions	377
14.1.4 Structural Basis of the High Phosphoryl Transfer Potential of ATP	378

- xxviii CONTENTS

15.4.1 Some Receptors Contain Tyrosine Kinase	
Domains Within Their Covalent Structures	414
15.4.2 Ras, Another Class of Signaling G Protein	415
15.5 Defects in Signaling Pathways Can Lead	
to Cancer and Other Diseases	416
15.5.1 Protein Kinase Inhibitors May Be Effective	110
Anticancer Drugs	418
15.5.2 Cholera and Whooping Cough Are Due to Altered G-Protein Activity	418
15.6 Recurring Features of Signal-Transduction Pathways Reveal Evolutionary Relationships	419
CHAPTER 16 Glycolysis and Gluconeogenesis	425
16.0.1 Glucose Is an Important Fuel for Most Organisms	426
16.0.2 Fermentations Provide Usable Energy in the	
Absence of Oxygen	426
16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms	428
16.1.1 Hexokinase Traps Glucose in the Cell and	120
Begins Glycolysis	428
16.1.2 The Formation of Fructose 1,6-bisphosphate from Glucose 6-phosphate	430
16.1.3 The Six-Carbon Sugar Is Cleaved into Two Three-Carbon Fragments by Aldolase	431
16.1.4 Triose Phosphate Isomerase Salvages a Three-Carbon Fragment	431
16.1.5 Energy Transformation: Phosphorylation Is Coupled to the Oxidation of Glyceraldehyde	433
3-phosphate by a Thioester Intermediate	733
16.1.6 The Formation of ATP from 1,3-Bisphosphoglycerate	435
16.1.7 The Generation of Additional ATP and the Formation of Pyruvate	435
16.1.8 Energy Yield in the Conversion of Glucose	
into Pyruvate	437



16.1.9 Maintaining Redox Balance: The Diverse Fates of Pyruvate	438
16.1.10 The Binding Site for NAD ⁺ Is Similar in Many Dehydrogenases	440
16.1.11 The Entry of Fructose and Galactose into Glycolysis	440
16.1.12 Many Adults Are Intolerant of Milk Because They Are Deficient in Lactase	442

16.1.13 Galactose Is Highly Toxic If the Transferase Is Missing	443
16.2 The Glycolytic Pathway Is Tightly Controlled	443
16.2.1 Phosphofructokinase Is the Key Enzyme in the Control of Glycolysis	444
16.2.2 A Regulated Bifuntional Enzyme Synthesizes and Degrades Fructose 2,6-bisphosphate	445
16.2.3 Hexokinase and Pyruvate Kinase Also Set the Pace of Glycolysis	447
16.2.4 A Family of Transporters Enables Glucose to Enter and Leave Animal Cells	448
16.2.5 Cancer and Glycolysis	449
16.3 Glucose Can Be Synthesized from Noncarbohydrate Precursors	450
16.3.1 Gluconeogenesis Is Not a Reversal of Glycolysis	450
16.3.2 The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate	452
16.3.3 Oxaloacetate Is Shuttled into the Cytosol and Converted into Phosphoenolpyrvuate	454
16.3.4 The Conversion of Fructose 1,6-bisphosphate into Fructose 6-phosphate and Orthophosphate Is an Irreversible Step	454
16.3.5 The Generation of Free Glucose Is an Important Control Point	455
16.3.6 Six High-Energy Phosphate Bonds Are Spent in Synthesizing Glucose from Pyruvate	455
16.4 Gluconeogenesis and Glycolysis Are Reciprocally Regulated	456
16.4.1 Substrate Cycles Amplify Metabolic Signals and Produce Heat	457
16.4.2 Lactate and Alanine Formed by Contracting Muscle Are Converted into Glucose by the Liver	458
16.4.3 Glycolysis and Gluconeogenesis Are Evolutionarily Intertwined	460
Construction of the Backward of the second se	
CHAPTER 17 The Citric Acid Cycle	465
17.0.1 An Overview of the Citric Acid Cycle	466
17.1 The Citric Acid Cycle Oxidizes Two-Carbon Units	467
17.1.1 The Formation of Acetyl Coenzyme A from Pyruvate	467
17.1.2 Flexible Linkages Allow Lipoamide to Move	

Units	467
17.1.1 The Formation of Acetyl Coenzyme A from Pyruvate	467
17.1.2 Flexible Linkages Allow Lipoamide to Move Between Different Active Sites	470
17.1.3 Citrate Synthase Forms Citrate from Oxaloacetate and Acetyl Coenzyme A	472
17.1.4 Citrate Is Isomerized into Isocitrate	473
17.1.5 Isocitrate Is Oxidized and Decarboxylated to α -Ketoglutarate	474
17.1.6 Succinyl Coenzyme A Is Formed by the Oxidative Decarboxylation of α -Ketoglutarate	475
17.1.7 A High Phosphoryl-Transfer Potential Compound Is Generated from Succinyl Coenzyme A	475

17.1.8 Oxaloacetate Is Regenerated by the Oxidation	
of Succinate	477
17.1.9 Stoichiometry of the Citric Acid Cycle	478
17.2 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled	480
17.2.1 The Pyruvate Dehydrogenase Complex Is Regulated Allosterically and by Reversible Phosphorylation	480
17.2.2 The Citric Acid Cycle Is Controlled at Several Points	481
17.3 The Citric Acid Cycle Is a Source of Biosynthetic Precursors	482
17.3.1 The Citric Acid Cycle Must Be Capable of Being Rapidly Replenished	482
17.3.2 The Disruption of Pyruvate Metabolism Is the Cause of Beriberi and Poisoning by Mercury and Arsenic	483
17.3.3 Speculations on the Evolutionary History of the Citric Acid Cycle	484
17.4 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate	484
CHAPTER 18 Oxidative Phosphorylation	491
18.1 Oxidative Phosphorylation in Eukaryotes Takes Place in Mitochondria	492
18.1.1 Mitochondria Are Bounded by a Double Membrane	492
18.1.2 Mitochondria Are the Result of an Endosymbiotic Event	493
18.2 Oxidative Phosphorylation Is Dependent on Electron Transfer	494
18.2.1 High-Energy Electrons: Redox Potentials and Free-Energy Changes	494
18.2.2 A 1.14-Volt Potential Difference Between NADH and O_2 Drives Electron Transport Through the Chain and Favors the Formation of a Proton Gradient	496
18.2.3 Electrons Can Be Transferred Between Groups That Are Not in Contact	497
18.3 The Respiratory Chain Consists of Four Complexes: Three Proton Pumps and a Physical Link to the Citric Acid Cycle	498

18.3.1 The High-Potential Electrons of NADH Ente	r
the Respiratory Chain at NADH-Q Oxidoreductase	

499

1

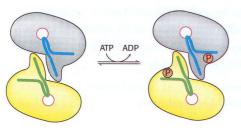
18.3.2 Ubiquinol Is the Entry Point for Electrons from	
FADH ₂ of Flavoproteins	501
18.3.3 Electrons Flow from Ubiquinol to Cytochrome <i>c</i> Through Q-Cytochrome <i>c</i> Oxidoreductase	501
18.3.4 Transmembrane Proton Transport:	
The Q Cycle	502
18.3.5 Cytochrome c Oxidase Catalyzes the Reduction	F03
of Molecular Oxygen to Water	503
18.3.6 Toxic Derivatives of Molecular Oxygen Such	
as Superoxide Radical Are Scavenged by Protective Enzymes	506
18.3.7 The Conformation of Cytochrome c Has	
Remained Essentially Constant for More Than a Billion Years	507
	507
18.4 A Proton Gradient Powers the Synthesis of ATP	507
18.4.1 ATP Synthase Is Composed of a Proton-	
Conducting Unit and a Catalytic Unit	509
18.4.2 Proton Flow Through ATP Synthase Leads to	
the Release of Tightly Bound ATP: The Binding- Change Mechanism	509
18.4.3 The World's Smallest Molecular Motor:	509
Rotational Catalysis	511
18.4.4 Proton Flow Around the c Ring Powers ATP	011
Synthesis	511
18.4.5 ATP Synthase and G Proteins Have Several	
Common Features	513
18.5 Many Shuttles Allow Movement Across the Mitochondrial Membranes	514
18.5.1 Electrons from Cytosolic NADH Enter	
Mitochondria by Shuttles	514
18.5.2 The Entry of ADP into Mitochondria Is Coupled to the Exit of ATP by ATP-ADP Translocase	515
18.5.3 Mitochondrial Transporters for Metabolites	515
Have a Common Tripartite Motif	516
18.6 The Regulation of Oxidative Phosphorylation Is Governed Primarily by the Need for ATP	517
18.6.1 The Complete Oxidation of Glucose Yields	517
About 30 Molecules of ATP	517
18.6.2 The Rate of Oxidative Phosphorylation Is	
Determined by the Need for ATP	518
18.6.3 Oxidative Phosphorylation Can Be Inhibited at Many Stages	F10
	519
18.6.4 Regulated Uncoupling Leads to the Generation of Heat	519
18.6.5 Mitochondrial Diseases Are Being Discovered	520
18.6.6 Mitochondria Play a Key Role in Apoptosis	521
18.6.7 Power Transmission by Proton Gradients:	
A Central Motif of Bioenergetics	521

Contents ---- xxix

CHAPTER 19 The Light Reactions of	Tot a
Photosynthesis	527
19.0.1 Photosynthesis: An Overview	528
19.1 Photosynthesis Takes Place in Choroplasts	528

CONTENTS

19.1.1 The Primary Events of Photosynthesis Take	
Place in Thylakoid Membranes	529
19.1.2 The Evolution of Chloroplasts	529
19.2 Light Absorption by Chlorophyll Induces Electron Transfer	529
19.2.1 Photosynthetic Bacteria and the Photosynthetic Reaction Centers of Green Plants Have a Common Core	531
19.2.2 A Special Pair of Chlorophylls Initiates Charge Separation	532
19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic Photosynthesis	533
19.3.1 Photosystem II Transfers Electrons from Water to Plastoquinone and Generates a Proton Gradient	534
19.3.2 Cytochrome <i>bf</i> Links Photosystem II to Photosystem I	536
19.3.3 Photosystem I Uses Light Energy to Generate Reduced Ferredoxin, a Powerful Reductant	537
19.3.4 Ferredoxin-NADP ⁺ Reductase Converts NADP ⁺ into NADPH	539
19.4 A Proton Gradient Across the Thylakoid Membrane Drives ATP Synthesis	540
19.4.1 The ATP Synthase of Chloroplasts Closely Resembles Those of Mitochondria and Prokaryotes	540
19.4.2 Cyclic Electron Flow Through Photosystem I Leads to the Production of ATP Instead of NADPH	541
19.4.3 The Absorption of Eight Photons Yields One O_2 , Two NADPH, and Three ATP Molecules	542
19.5 Accessory Pigments Funnel Energy into Reaction Centers	543
19.5.1 Resonance Energy Transfer Allows Energy to Move from the Site of Initial Absorbance to the	F 4 0
Reaction Center 19.5.2 Light-Harvesting Complexes Contain Additional	543
Chlorophylls and Carotinoids 19.5.3 Phycobilisomes Serve as Molecular Light Pipes	544
in Cyanobacteria and Red Algae 19.5.4 Components of Photosynthesis Are Highly	545
Organized 19.5.5 Many Herbicides Inhibit the Light Reaction of	546
Photosynthesis	546
19.6 The Ability to Convert Light into Chemical Energy Is Ancient	547
CHAPTER 20 The Calvin Cycle and the Pentose Phosphate Pathway	551
20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water	552
20.1.1 Carbon Dioxide Reacts with Ribulose 1,5-bisphosphate to Form Two Molecules of	
3-Phosphoglycerate 20.1.2 Catalytic Imperfection: Rubisco Also Catalyzes	553
a Wasteful Oxygenase Reaction	55.


20.1.3 Hexose Phosphates Are Made from Phosphoglycerate, and Ribulose 1,5-bisphosphate Is Regenerated	556
20.1.4 Three Molecules of ATP and Two Molecules of NADPH Are Used to Bring Carbon Dioxide to the Level of a Hexose	559
20.1.5 Starch and Sucrose Are the Major Carbohydrate Stores in Plants	559
20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions	560
20.2.1 Rubisco Is Activated by Light-Driven Changes in Proton and Magnesium Ion Concentrations	560

in Proton and Magnesium Ion Concentrations	
20.2.2 Thioredoxin Plays a Key Role in Regulating the	
Calvin Cycle	560

20.2.3 The C ₄ Pathway of Tropical Plants Accelerates Photosynthesis by Concentrating Carbon Dioxide	561
20.2.4 Crassulacean Acid Metabolism Permits Growth in Arid Ecosystems	562
20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars	563
20.3.1 Two Molecules of NADPH Are Generated in the Conversion of Glucose 6-phosphate into Ribulose 5-phosphate	564
20.3.2 The Pentose Phosphate Pathway and Glycolysis Are Linked by Transketolase and Transaldolase	564
20.3.3 Transketolase and Transaldolase Stabilize Carbanionic Intermediates by Different Mechanisms	566
20.4 The Metabolism of Glucose 6-Phosphate by the Pentose Phosphate Pathway Is Coordinated with Glycolysis	568
20.4.1 The Rate of the Pentose Phosphate Pathway Is Controlled by the Level of NADP ⁺	568
20.4.2 The Flow of Glucose 6-phosphate Depends on the Need for NADPH, Ribose 5-phosphate, and ATP	568
20.4.3 Through the Looking Glass: The Calvin Cycle and the Pentose Phosphate Pathway	571
20.5 Glucose 6-Phosphate Dehydrogenase Plays a Key Role in Protecting Against Reactive Oxygen Species	571
20.5.1 Glucose 6-phosphate Dehydrogenase Deficiency Causes a Drug-Induced Hemolytic Anemia	571

20.5.2 A Deficiency of Glucose 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances	572
CHAPTER 21 Glycogen Metabolism	577
21.0.1 An Overview of Glycogen Metabolism	578
21.1 Glycogen Breakdown Requries the Interplay of Several Enzymes	579
21.1.1 Phosphorylase Catalyzes the Phosphorolytic Cleavage of Glycogen to Release Glucose 1-phosphate	579
21.1.2 A Debranching Enzyme Also Is Needed for the Breakdown of Glycogen	580
21.1.3 Phosphoglucomutase Converts Glucose 1-phosphate into Glucose 6-phosphate	581
21.1.4 Liver Contains Glucose 6-phosphatase, a Hydrolytic Enzyme Absent from Muscle	581
21.1.5 Pyridoxal Phosphate Participates in the Phosphorolytic Cleavage of Glycogen	582
21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation	583

D

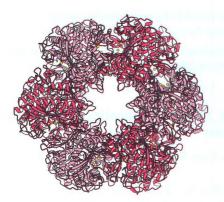
Intracellular Energy Charge	583
21.2.2 Liver Phosphorylase Produces Glucose for Use by Other Tissues	585
21.2.3 Phosphorylase Kinase Is Activated by Phosphorylation and Calcium Ions	586
21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown	586
21.3.1 G Proteins Transmit the Signal for the Initiation of Glycogen Breakdown	586
21.3.2 Glycogen Breakdown Must Be Capable of Being Rapidly Turned Off	588
21.3.3 The Regulation of Glycogen Phosphorylase Became More Sophisticated As the Enzyme Evolved	588
21.4 Glycogen Is Synthesized and Degraded by Different Pathways	589
21.4.1 UDP-Glucose Is an Activated Form of Glucose	589
21.4.2 Glycogen Synthase Catalyzes the Transfer of Glucose from UDP-Glucose to a Growing Chain	589
21.4.3 A Branching Enzyme Forms α -1,6 Linkages	590
21.4.4 Glycogen Synthase Is the Key Regulatory Enzyme in Glycogen Synthesis	591
21.4.5 Glycogen Is an Efficient Storage Form of Glucose	591

	Contents — XX	xi —
	reakdown and Synthesis Are	
	sphatase 1 Reverses the Regulatory	592
	on Glycogen Metabolism nulates Glycogen Synthesis by	592
Activating Protein	Phosphatase 1	593
21.5.3 Glycogen N the Blood-Glucose	fetabolism in the Liver Regulates Level	594
21.5.4 A Biochemi Storage Diseases Is	cal Understanding of Glycogen- Possible	595
	tty Acid Metabolism	601
	w of Fatty Acid Metabolism	601
22.1 Triacylglyce Energy Stores	rols Are Highly Concentrated	603
22.1.1 Dietary Lip	ids Are Digested by Pancreatic	000
Lipases	1 A T 1'	603
Chylomicrons	ids Are Transported in	604
22.2 The Utilizati	on of Fatty Acids As Fuel	
	tages of Processing	605
AMP-Regulated Li	rols Are Hydrolyzed by Cyclic pases	605
22.2.2 Fatty Acids Before They Are O	Are Linked to Coenzyme A	(0)
	arries Long-Chain Activated	606
Fatty Acids into the	e Mitochondrial Matrix	607
	, NADH, and FADH ₂ Are Round of Fatty Acid Oxidation	607
	ete Oxidation of Palmitate Yields	
		609
Steps for Degrada	7 Acids Require Additional tion	610
	se and a Reductase Are Required f Unsaturated Fatty Acids	610
	Fatty Acids Yield Propionyl	010
Coenzyme A in the	Final Thiolysis Step	611
	oA Is Converted into Succinyl Fhat Requires Vitamin B ₁₂	611
	Are Also Oxidized in Peroxisomes	614
	es Are Formed from Acetyl Fat Breakdown Predominates	615
	es Are a Major Fuel in Some Tissues	615 616
22.3.7 Animals Car	nnot Convert Fatty Acids into	(47
Glucose		617
22.4 Fatty Acids A by Different Pathy	Are Synthesized and Degraded ways	617
	on of Malonyl Coenzyme A Is the	(17
	Fatty Acid Synthesis es in Fatty Acid Synthesis Are	617
Attached to an Acyl	Carrier Protein	618
22.4.3 The Elongat	ion Cycle in Fatty Acid Synthesis	618

xxxii CONTENTS

22.4.4 Fatty Acids Are Synthesized by a Multifunctional Enzyme Complex in Eukaryotes	620
22.4.5 The Flexible Phosphopantetheinyl Unit of ACP Carries Substrate from One Active Site to Another	621
22.4.6 The Stoichiometry of Fatty Acid Synthesis	622
22.4.7 Citrate Carries Acetyl Groups from Mitochondria to the Cytosol for Fatty Acid Synthesis	622
22.4.8 Sources of NADPH for Fatty Acid Synthesis	623
22.4.9 Fatty Acid Synthase Inhibitors May Be Useful Drugs	623
22.4.10 Variations on a Theme: Polyketide and Nonribosomal Peptide Synthases Resemble Fatty Acid Synthase	624
22.5 Acetyl Coenzyme A Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism	624
22.6 Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory Enzyme	
Systems	626
22.6.1 Membrane-Bound Enzymes Generate Unsaturated Fatty Acids	626
22.6.2 Eicosanoid Hormones Are Derived from Polyunsaturated Fatty Acids	626

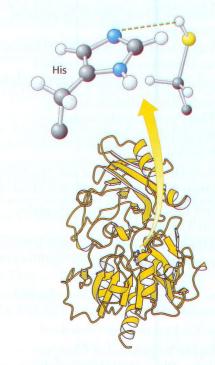
CHAPTER 23 Protein Turnover and Amino Acid Catabolism


23.1 Proteins Are Degraded to Amino Acids	634
23.1.1 The Digestion and Absorption of Dietary Proteins	634
23.1.2 Cellular Proteins Are Degraded at Different Rates	634
23.2 Protein Turnover Is Tightly Regulated	635
23.2.1 Ubiquitin Tags Proteins for Destruction	635
23.2.2 The Proteasome Digests the Ubiquitin-Tagged Proteins	636
23.2.3 Protein Degradation Can Be Used to a Regulate Biological Function	638
23.2.4 The Ubiquitin Pathway and the Proteasome Have Prokaryotic Counterparts	638
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen	639
23.3.1 Alpha-Amino Groups Are Converted into Ammonium Ions by the Oxidative Deamination of Glutamate	639
23.3.2 Pyridoxal Phosphate Forms Schiff-Base Intermediates in Aminotransferases	640
23.3.3 Aspartate Aminotransferase Is a Member of a Large and Versatile Family of Pyridoxal-Dependent	
Enzymes	642
23.3.4 Serine and Threonine Can Be Directly Deaminated	643
23.3.5 Peripheral Tissues Transport Nitrogen to the Liver	643

23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	644
23.4.1 The Urea Cycle Begins with the Formation of Carbamoyl Phosphate	645
23.4.2 The Urea Cycle Is Linked to the Citric Acid Cycle	646
23.4.3 The Evolution of the Urea Cycle	646
23.4.4 Inherited Defects of the Urea Cycle Cause Hyperammonemia and Can Lead to Brain Damage	647
23.4.5 Urea Is Not the Only Means of Disposing of Excess Nitrogen	648
23.5 Carbon Atoms of Degraded Amino Acids Emerge As Major Metabolic Intermediates	649
23.5.1 Pyruvate as an Entry Point into Metabolism	650
23.5.2 Oxaloacetate as an Entry point into Metabolism	650
23.5.3 Alpha-Ketoglutarate as an Entry Point into Metabolism	651
23.5.4 Succinyl Coenzyme A Is a Point of Entry for Several Nonpolar Amino Acids	652
23.5.5 Methionine Degradation Requires the Formation of a Key Methyl Donor, S-Adenosylmethionine	652
23.5.6 The Branched-Chain Amino Acids Yield Acetyl CoA, Acetoacetate, or Propionyl CoA	652
23.5.7 Oxygenases Are Required for the Degradation of Aromatic Amino Acids	654
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	655

PART III SYNTHESIZING THE MOLECULES OF LIFE

CHAPTER 24 The Biosynthesis of Amino Acids	665
24.0.1 An Overview of Amino Acid Synthesis	666
24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia	666
24.1.1 The Iron–Molybdenum Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen	667
24.1.2 Ammonium Ion Is Assimilated into an Amino Acid Through Glutamate and Glutamine	668
24.2 Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways	670
24.2.1 Human Beings Can Synthesize Some Amino Acids But Must Obtain Others from The Diet	671
24.2.2 A Common Step Determines the Chirality of All Amino Acids	671
24.2.3 An Adenylated Intermediate Is Required to Form Asparagine from Aspartate	673
24.2.4 Glutamate Is the Precursor of Glutamine, Proline, and Arginine	673


Com	tomto		Associated in the second se	
Con	tents	-	xxxiii	

24.2.5 Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate	674
24.2.6 Tetrahydrofolate Carries Activated One-Carbon Units at Several Oxidation Levels	674
24.2.7 S-Adenosylmethionine Is the Major Donor of Methyl Groups	676
24.2.8 Cysteine Is Synthesized from Serine and Homocysteine	678
24.2.9 High Homocysteine Levels Are Associated with Vascular Disease	678
24.2.10 Shikimate and Chorismate Are Intermediates in the Biosynthesis of Aromatic Amino Acids	678
24.2.11 Tryptophan Synthetase Illustrates Substrate Channeling in Enzymatic Catalysis	681
24.3 Amino Acid Biosynthesis Is Regulated by Feedback Inhibition	681
24.3.1 Branched Pathways Require Sophisticated Regulation	682
24.3.2 The Activity of Glutamine Synthetase Is Modulated by an Enzymatic Cascade	684
24.4 Amino Acids Are Precursors of Many Biomolecules	685
24.4.1 Glutathione, a Gamma-Glutamyl Peptide, Serves As a Sulfhydryl Buffer and an Antioxidant	686
24.4.2 Nitric Oxide, a Short-Lived Signal Molecule, Is Formed from Arginine	686
24.4.3 Mammalian Porphyrins Are Synthesized from Glycine and Succinyl Coenzyme A	687
24.4.4 Porphyrins Accumulate in Some Inherited Disorders of Porphyrin Metabolism	688
CHAPTER 25 Nucleotide Biosynthesis	693
25.0.1 Overview of Nucleotide Biosynthesis and Nomenclature	694
25.1 In de Novo Synthesis, the Pyrimidine Ring Is Assembled from Bicarbonate, Aspartate, and Glutamine	(04
25.1.1 Bicarbonate and Other Oxygenated Carbon Compounds Are Activated by Phosphorylation	694 695
25.1.2 The Side Chain of Glutamine Can Be Hydrolyzed to Generate Ammonia	695
25.1.3 Intermediates Can Move Between Active Sites by Channeling	696

25.1.4 Orotate Acquires a Ribose Ring from PRPP to Form a Pyrimidine Nucleotide and Is Converted into	
Uridylate	696
25.1.5 Nucleotide Mono-, Di-, and Triphosphates Are Interconvertible	697
25.1.6 CTP Is Formed by Amination of UTP	697
25.2 Purine Bases Can Be Synthesized de Novo or	

25.2 Purine Bases Can Be Synthesized de Novo or
Recycled by Salvage Pathways698

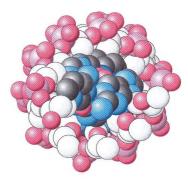
25.2.1 Salvage Pathways Economize Intracellular Energy Expenditure	698
25.2.2 The Purine Ring System Is Assembled on Ribose Phosphate	698
25.2.3 The Purine Ring Is Assembled by Successive Steps of Activation by Phosphorylation Followed by Displacement	699
25.2.4 AMP and GMP Are Formed from IMP	701
25.3 Deoxyribonucleotides Are Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism	702
25.3.1 Thymidylate Is Formed by the Methylation of Deoxyuridylate	704
25.3.2 Dihydrofolate Reductase Catalyzes the Regeneration of Tetrahydrofolate, a One-Carbon Carrier	705
25.3.3 Several Valuable Anticancer Drugs Block the Synthesis of Thymidylate	705
25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition	707
25.5 NAD ⁺ , FAD, and Coenzyme A Are Formed from ATP	708
25.6 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions	709
25.6.1 Purines Are Degraded to Urate in Human Beings	709

XXXIV CONTENTS

25.6.2 Lesch-Nyhan Syndrome Is a Dramatic	
Consequence of Mutations in a Salvage-Pathway	
Enzyme	710

CHAPTER 26 The Biosynthesis of Membrane Lipids and Steroids

715


26.1 Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and Triacylglycerols	716
26.1.1 The Synthesis of Phospholipids Requires an Activated Intermediate	716
26.1.2 Plasmalogens and Other Ether Phospholipids Are Synthesized from Dihydroxyacetone Phosphate	718
26.1.3 Sphingolipids Are Synthesized from Ceramide	720
26.1.4 Gangliosides Are Carbohydrate-Rich Sphingolipids That Contain Acidic Sugars	721
26.1.5 Sphingolipids Provide Diversity in Lipid Structure and Function	721
26.1.6 Respiratory Distress Syndrome and Tay-Sachs Disease Result from the Disruption of Lipid Metabolism	721
26.2 Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages	722
26.2.1 The Synthesis of Mevalonate, Which Is Activated as Isopentyl Pyrophosphate, Initiates the Synthesis of	723
Cholesterol 26.2.2 Squalene (C_{30}) Is Synthesized from Six Molecules of Isopentyl Pyrophosphate (C_5)	725
26.2.3 Squalene Cyclizes to Form Cholesterol	725
26.3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels	726
26.3.1 Lipoproteins Transport Cholesterol and Triacylglycerols Throughout the Organism	727
26.3.2 The Blood Levels of Certain Lipoproteins Can Serve Diagnostic Purposes	728
26.3.3 Low-Density Lipoproteins Play a Central Role in Cholesterol Metabolism	728
26.3.4 The LDL Receptor Is a Transmembrane Protein with Five Different Functional Regions	730
26.3.5 The Absence of the LDL Receptor Leads to Hypercholesteremia and Atherosclerosis	730
26.3.6 The Clinical Management of Cholesterol Levels Can Be Understood at a Biochemical Level	731
26.4 Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones	731
26.4.1 The Nomenclature of Steroid Hormones	733
26.4.2 Steroids Are Hydroxylated by Cytochrome P450 Monooxygenases That Utilize NADPH and O_2	734
26.4.3 The Cytochrome P450 System Is Widespread and Performs a Protective Enzyme Function	735
26.4.4 Pregnenolone, a Precursor for Many Other Steroids, Is Formed from Cholesterol by Cleavage of Its Side Chain	735
26.4.5 The Synthesis of Progesterone and Corticosteroids from Pregnenolone	735
26.4.6 The Synthesis of Androgens and Estrogens from Pregnenolone	736

26.4.7 Vitamin D Is Derived from Cholesterol by the	
Ring-Splitting Activity of Light	737
26.4.8 Isopentenyl Pyrophosphate Is a Precursor for a	
Wide Variety of Biomolecules	738

CHAPTER 27 DNA Replication, Recombination, and Repair 745

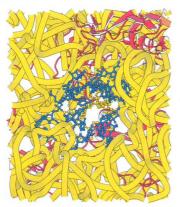
27.1 DNA Can Assume a Variety of Structural Forms	745
27.1.1 A-DNA Is a Double Helix with Different Characteristics from Those of the More Common B-DNA	747
27.1.2 The Major and Minor Grooves Are Lined by Sequence-Specific Hydrogen-Bonding Groups	748
27.1.3 The Results of Studies of Single Crystals of DNA Revealed Local Variations in DNA Structure	748
27.1.4 Z-DNA Is a Left-Handed Double Helix in Which Backbone Phosphates Zigzag	749

27.2 DNA Polymerases Require a Template and a Primer 750

27.2.1 All DNA Polymerases Have Structural Features in Common	750
27.2.2 Two Bound Metal Ions Participate in the Polymerase Reaction	751
27.2.3 The Specificity of Replication Is Dictated by Hydrogen Bonding and Complementarity of Shape Between Bases	751
27.2.4 Many Polymerases Proofread the Newly Added Bases and Excise Errors	752
27.2.5 The Separation of DNA Strands Requires Specific Helicases and ATP Hydrolysis	753
27.3 Double-Stranded DNA Can Wrap Around Itself to Form Supercoiled Structures	754
27.3.1 The Linking Number of DNA, a Topological Property, Determines the Degree of Supercoiling	754
27.3.2 Helical Twist and Superhelical Writhe Are Correlated with Each Other Through the Linking Number	755
27.3.3 Type I Topoisomerases Relax Supercoiled Structures	756
27.3.4 Type II Topoisomerases Can Introduce Negative Supercoils Through Coupling to ATP Hydrolysis	757
27.4 DNA Replication of Both Strands Proceeds Rapidly from Specific Start Sites	759

27.4.1 An RNA Primer Synthesized by Primase	
Enables DNA Synthesis to Begin	760
27.4.2 One Strand of DNA Is Made Continuously, Whereas the Other Strand Is Synthesized in Fragments	761
27.4.3 DNA Ligase Joins Ends of DNA in Duplex Regions	761
27.4.4 DNA Replication Requires Highly Processive	
Polymerases	762
27.4.5 The Leading and Lagging Strands Are Synthesized in a Coordinated Fashion	763
27.4.6 DNA Synthesis Is More Complex in Eukaryotes Than in Prokaryotes	764
27.4.7 Telomeres Are Unique Structures at the Ends of Linear Chromosomes	765
27.4.8 Telomeres Are Replicated by Telomerase, a Specialized Polymerase That Carries Its Own RNA	
Template	765
27.5 Double-Stranded DNA Molecules with Similar Sequences Sometimes Recombine	766
27.5.1 Recombination Reactions Proceed Through Holliday Junction Intermediates	766
27.5.2 Recombinases Are Evolutionarily Related to Topoisomerases	768
27.6 Mutations Are Produced by Several Types of Changes in the Base Sequence of DNA	768
27.6.1 Some Chemical Mutagens Are Quite Specific	769
27.6.2 Ultraviolet Light Produces Pyrimidine Dimers	770
27.6.3 A Variety of DNA-Repair Pathways Are Utilized	770
27.6.4 The Presence of Thymine Instead of Uracil in DNA Permits the Repair of Deaminated Cytosine	771
27.6.5 Many Cancers Are Caused by Defective Repair of DNA	772
27.6.6 Some Genetic Diseases Are Caused by the Expansion of Repeats of Three Nucleotides	773
27.6.7 Many Potential Carcinogens Can Be Detected by Their Mutagenic Action on Bacteria	773
CHAPTER 28 RNA Synthesis and Splicing	781
28.0.1 An Overview of RNA Synthesis	782
28.1 Transcription Is Catalyzed by RNA Polymerase	783
28.1.1 Transcription is Initiated at Promoter Sites	

28.1.1 Transcription is Initiated at Promoter Sites on the DNA Template	784
28.1.2 Sigma Subunits of the RNA Polymerase Recognize Promoter Sites	785
28.1.3 RNA Polymerase Must Unwind the Template Double Helix for Transcription to Take Place	786
28.1.4 RNA Chains Are Formed de Novo and Grow in the 5'-to-3' Direction	786
28.1.5 Elongation Takes Place at Transcription Bubbles That Move Along the DNA Template	787
28.1.6 An RNA Hairpin Followed by Several Uracil Residues Terminates the Transcription of Some Genes	788


Contents xxxv

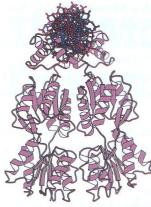
28.1.7 The Rho Protein Helps Terminate the	-
Transcription of Some Genes 28.1.8 Precursors of Transfer and Ribosomal RNA	789
Are Cleaved and Chemically Modified After	
Transcription	790
28.1.9 Antibiotic Inhibitors of Transcription	791
28.2 Eukaryotic Transcription and Translation Are Separated in Space and Time	792
28.2.1 RNA in Eukaryotic Cells Is Synthesized by Three Types of RNA Polymerase	793
28.2.2 Cis- and Trans-Acting Elements: Locks and Keys of Transcription	794
28.2.3 Most Promoters for RNA Polymerase II Contain a TATA Box Near the Transcription	
Start Site	794
28.2.4 The TATA-Box-Binding Protein Initiates the Assembly of the Active Transcription Complex	795
28.2.5 Multiple Transcription Factors Interact with Eukaryotic Promoters	796
28.2.6 Enhancer Sequences Can Stimulate Transcription at Start Sites Thousand of Bases Away	797
28.3 The Transcription Products of All Three	
Eukaryotic Polymerases Are Processed	797
28.3.1 The Ends of the Pre-mRNA Transcript Acquire a 5' Cap and a 3' Poly(A) Tail	798
28.3.2 RNA Editing Changes the Proteins Encoded by mRNA	798
28.3.3 Splice Sites in mRNA Precursors Are Specified by Sequences at the Ends of Introns	799
28.3.4 Splicing Consists of Two Transesterification Reactions	800
28.3.5 Small Nuclear RNAs in Spliceosomes Catalyze the Splicing of mRNA Precursors	801
28.3.6 Some Pre-mRNA Molecules Can Be Spliced in Alternative Ways to Yield Different mRNAs	803
28.4 The Discovery of Catalytic RNA Was	
Revealing in Regard to Both Mechanism and Evolution	904
Lvolution	804
CHAPTER 29 Protein Synthesis	813
29.1 Protein Synthesis Requires the Translation	
of Nucleotide Sequences into Amino Acid Sequences	814
29.1.1 The Synthesis of Long Proteins Requires a Low	011
Error Frequency	814
29.1.2 Transfer RNA Molecules Have a Common Design	815
29.1.3 The Activated Amino Acid and the Anticodon of tRNA Are at Opposite Ends of the L-Shaped	015
Molecule	817
29.2 Aminoacyl-Transfer RNA Synthetases Read the Genetic Code	817
29.2.1 Amino Acids Are First Activated by	
Adenylation	818

CONTENTS

29.2.2 Aminoacyl-tRNA Synthetases Have Highly	
Discriminating Amino Acid Activation Sites	
29.2.3 Proofreading by Aminoacyl-tRNA Synthetases Increases the Fidelity of Protein Synthesis	
29.2.4 Synthetases Recognize the Anticodon Loops and Acceptor Stems of Transfer RNA Molecules	
29.2.5 Aminoacyl-tRNA Synthetases Can Be Divided into Two Classes	

29.3 A Ribosome Is a Ribonucleoprotein Particle (70S) Made of a Small (30S) and a Large (50S) Subunit

29.3.1 Ribosomal RNAs (5S, 16S, and 23S rRNA) Play a Central Role in Protein Synthesis	824
29.3.2 Proteins Are Synthesized in the Amino-to- Carboxyl Direction	826
29.3.3 Messenger RNA Is Translated in the 5'-to-3' Direction	826
29.3.4 The Start Signal Is AUG (or GUG) Preceded by Several Bases That Pair with 16S rRNA	827
29.3.5 Bacterial Protein Synthesis Is Initiated by Formylmethionyl Transfer RNA	828
29.3.6 Ribosomes Have Three tRNA-Binding Sites That Bridge the 30S and 50S Subunits	828
29.3.7 The Growing Polypeptide Chain Is Transferred Between tRNAs on Peptide-Bond Formation	829
29.3.8 Only the Codon–Anticodon Interactions Determine the Amino Acid That Is Incorporated	831
29.3.9 Some Transfer RNA Molecules Recognize More Than One Codon Because of Wobble in Base Pairing	832
29.4 Protein Factors Play Key Roles in Protein Synthesis	833
29.4.1 Formylmethionyl-tRNA _f Is Placed in the P Site of the Ribosome During Formation of the 70S Initiation Complex	833
29.4.2 Elongation Factors Deliver Aminoacyl-tRNA to the Ribosome	834
29.4.3 The Formation of a Peptide Bond Is Followed by the GTP-Driven Translocation of tRNAs and mRNA	834
29.4.4 Protein Synthesis Is Terminated by Release Factors That Read Stop Codons	835
29.5 Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily in	
Translation Initiation	837


29.5.1 Many Antibiotics Work by Inhibiting Protein Synthesis	838
29.5.2 Diphtheria Toxin Blocks Protein Synthesis in Eukaryotes by Inhibiting Translocation	839
CHAPTER 30 The Integration of Metabolism	845
30.1 Metabolism Consists of Highly Interconnected Pathways	845
30.1.1 Recurring Motifs in Metabolic Regulation	846
30.1.2 Major Metabolic Pathways and Control Sites	847
30.1.3 Key Junctions: Glucose 6-phosphate, Pyruvate, and Acetyl CoA	849
30.2 Each Organ Has a Unique Metabolic Profile	851
30.3 Food Intake and Starvation Induce Metabolic Change	854
30.3.1 Metabolic Adaptations in Prolonged Starvation Minimize Protein Degradation	856
30.3.2 Metabolic Derangements in Diabetes Result from Relative Insulin Insufficiency and Glucagon Excess	858
30.3.3 Caloric Homeostasis: A Means of Regulating Body Weight	859
30.4 Fuel Choice During Exercise Is Determined by Intensity and Duration of Activity	860
30.5 Ethanol Alters Energy Metabolism in the Liver	861

CHAPTER 31 The Control of Gene Expression 867

31.1 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons	868
31.1.1 An Operon Consists of Regulatory Elements and Protein-Encoding Genes	869
31.1.2 The <i>lac</i> Operator Has a Symmetric Base Sequence	870
31.1.3 The <i>lac</i> Repressor Protein in the Absence of Lactose Binds to the Operator and Blocks Transcription	870
31.1.4 Ligand Binding Can Induce Structural Changes in Regulatory Proteins	871
31.1.5 The Operon Is a Common Regulatory Unit in Prokaryotes	872
31.1.6 Transcription Can Be Stimulated by Proteins That Contact RNA Polymerase	873
31.1.7 The Helix-Turn-Helix Motif Is Common to Many Prokaryotic DNA-Binding Proteins	873
31.2 The Greater Complexity of Eukaryotic Genomes Requires Elaborate Mechanisms	
for Gene Regulation	874
31.2.1 Nucleosomes Are Complexes of DNA and Histones	875
31.2.2 Eukaryotic DNA Is Wrapped Around Histones to Form Nucleosomes	876
31.2.3 The Control of Gene Expression Requires Chromatin Remodeling	877

31.2.4 Enhancers Can Stimulate Transcription by	
Perturbing Chromatin Structure	878
31.2.5 The Modification of DNA Can Alter Patterns of	
Gene Expression	878
	878

31.3 Transcriptional Activation and Repression Are Mediated by Protein-Protein Interactions 879

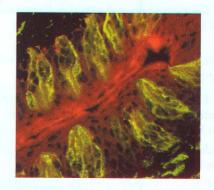
31.3.1 Steroids and Related Hydrophobic Molecules Pass Though Membranes and Bind to DNA-Binding Receptors	879
31.3.2 Nuclear Hormone Receptors Regulate Transcription by Recruiting Coactivators and Corepressors to the Transcription Complex	881
31.3.3 Steroid-Hormone Receptors Are Targets for Drugs	883
31.3.4 Chromatin Structure Is Modulated Through Covalent Modifications of Histone Tails	884
31.3.5 Histone Deacetylases Contribute to Transcriptional Repression	885
31.3.6 Ligand Binding to Membrane Receptors Can Regulate Transcription Though Phosphorylation	
Cascades	886
31.3.7 Chomatin Structure Effectively Decreases the Size of the Genome	887
31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels	887
31.4.1 Attenuation Is a Prokaryotic Mechanism for Regulating Transcription Through Modulation of	
Nascent RNA Secondary Structure	887
31.4.2 Genes Associated with Iron Metabolism Are Translationally Regulated in Animals	888
manorany Regulated III / Millians	000

PART IV RESPONDING TO **ENVIRONMENTAL CHANGES**

CHAPTER 32 Sensory Systems

32.1 A Wide Variety of Organic Compounds Are	
Detected by Olfaction	898
32.1.1 Olfaction Is Mediated by an Enormous Family of Seven-Transmembrane-Helix Receptors	899
32.1.2 Odorants Are Decoded by a Combinatorial Mechanism	901
32.1.3 Functional Magnetic Resonance Imaging Reveals Regions of the Brain Processing Sensory Information	902

897


32.2 Taste Is a Combination of Senses That Function by Different Mechanisms	903
32.2.1 Sequencing the Human Genome Led to the Discovery of a Large Family of 7TM Bitter Receptors	904
32.2.2 A Family of 7TM Receptors Respond to Sweet Compounds	906
32.2.3 Salty Tastes Are Detected Primarily by the Passage of Sodium Ions Through Channels	906
32.2.4 Sour Tastes Arise from the Effects of Hydrogen Ions (Acids) on Channels	906
32.2.5 Umami, the Taste of Glutamate, Is Detected by a Specialized Form of Glutamate Receptor	907

Contents

xxxvii

32.3 Photoreceptor Molecules in the Eye Detect Visible Light

32.3.1 Rhodopsin, a Specialized 7TM Receptor, Absorbs Visible Light	908
32.3.2 Light Absorption Induces a Specific Isomerization of Bound 11- <i>cis</i> -Retinal	909
32.3.3 Light-Induced Lowering of the Calcium Level Coordinates Recovery	910
32.3.4 Color Vision Is Mediated by Three Cone Receptors That Are Homologs of Rhodopsin	911
32.3.5 Rearrangements in the Genes for the Green and Red Pigments Lead to "Color Blindness"	912
32.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli	913
32.4.1 Hair Cells Use a Connected Bundle of Stereocilia to Detect Tiny Motions	913
32.4.2 Mechanosensory Channels Have Been Identified in <i>Drosophila</i> and Bacteria	914
32.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors	915
32.5.1 Studies of Capsaicin, the Active Ingredient in "Hot" Peppers, Reveal a Receptor for Sensing High	
Temperatures and Other Painful Stimuli 32.5.2 Subtle Sensory Systems Detect Other	915
Environmental Factors Such as Earth's Magnetic Field	917
CHAPTER 33 The Immune System	921
33.0.1 The Immune System Adapts, Using the Principles of Evolution	921
33.1 Antibodies Possess Distinct Antigen-Binding and Effector Units	922

xxxviii CONTENTS

33.2 The Immunoglobulin Fold Consists of a Beta- Sandwich Framework with Hypervariable Loops	926
33.3 Antibodies Bind Specific Molecules Through Their Hypervariable Loops	927
33.3.1 X-Ray Analyses Have Revealed How Antibodies Bind Antigens	927
33.3.2 Large Antigens Bind Antibodies with Numerous Interactions	929
33.4 Diversity Is Generated By Gene Rearrangements	929
33.4.1 J (Joining) Genes and D (Diversity) Genes Increase Antibody Diversity	930
33.4.2 More Than 10 ⁸ Antibodies Can Be Formed by Combinatorial Association and Somatic Mutation	931
33.4.3 The Oligomerization of Antibodies Expressed on the Surface of Immature B Cells Triggers Antibody Secretion	932
33.4.4 Different Classes of Antibodies Are Formed by the Hopping of $\rm V_{H}$ Genes	933
33.5 Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	934
33.5.1 Peptides Presented by MHC Proteins Occupy a Deep Groove Flanked by Alpha-Helices	935
33.5.2 T-Cell Receptors Are Antibody-like Proteins Containing Variable and Constant Regions	937
33.5.3 CD8 on Cytotoxic T Cells Acts in Concert with T-Cell Receptors	937
33.5.4 Helper T Cells Stimulate Cells That Display Foreign Peptides Bound to Class II MHC Proteins	939
33.5.5 Helper T Cells Rely on T-Cell Receptor and CD4 to Recognize Foreign Peptides on Antigen- Presenting Cells	940
33.5.6 MHC Proteins Are Highly Diverse	941
33.5.7 Human Immunodeficiency Viruses Subvert the Immune System by Destroying Helper T Cells	942
33.6 Immune Responses Against Self-Antigens Are Suppressed	943
33.6.1 T Cells Are Subject to Positive and Negative Selection in the Thymus	943

33.6.2 Autoimmune Diseases Result from the Generation of Immune Responses Against Self-Antigens 944 33.6.3 The Immune System Plays a Role in Cancer 945 Prevention **CHAPTER 34 Molecular Motors** 951 34.1 Most Molecular-Motor Proteins Are Members 951 of the P-Loop NTPase Superfamily 34.1.1 A Motor Protein Consists of an ATPase Core 952 and an Extended Structure 34.1.2 ATP Binding and Hydrolysis Induce Changes in the Conformation and Binding Affinity of Motor 954 Proteins 956 34.2 Myosins Move Along Actin Filaments 957 34.2.1 Muscle Is a Comples of Myosin and Actin 34.2.2 Actin Is a Polar, Self-Assembling, Dynamic 958 Polymer 34.2.3 Motions of Single Motor Proteins Can Be Directly 960 Observed 34.2.4 Phosphate Release Triggers the Myosin Power 960 Stroke 34.2.5 The Length of the Lever Arm Determines Motor 962 Velocity 34.3 Kinesin and Dynein Move Along Microtubules 962 34.3.1 Microtubules Are Hollow Cylindrical Polymers 963 964 34.3.2 Kinesin Motion Is Highly Processive 34.3.3 Small Structural Changes Can Reverse Motor 966 Polarity 967 34.4 A Rotary Motor Drives Bacterial Motion 967 34.4.1 Bacteria Swim by Rotating Their Flagella 968 34.4.2 Proton Flow Drives Bacterial Flagellar Rotation 34.4.3 Bacterial Chemotaxis Depends on Reversal of the 969 Direction of Flagellar Rotation A1 Annendives

1 11
B1
C1
D1