CONTENTS

Properties

49

L	ist of Figures xiii
	ist of Tables xv
L	ist of Boxes xvii
A	cknowledgments xix
	e Cancentrared Bramework 279
1.	Introduction 1
	The Problem and Objectives 1
	Outline of the Book 3
2.	Rational Inference: A Constrained Optimization Framework 10
	Inference Under Limited Information 11
	Qualitative Arguments for Rational Inference 11
	Probability Distributions: The Object of Interest 12
	Constrained Optimization: A Preliminary Formulation 15
	The Basic Questions 18
	Motivating Axioms for Inference Under Limited Information 19
	Axioms Set A: Defined on the Decision Function 20
	Axioms Set B: Defined on the Inference Itself 20
	Axioms Set C: Defined on the Inference Itself 21
	Axioms Set D: Symmetry 22
	Inference for Repeated Experiments 22
	Axioms Versus Properties 24
3.	The Metrics of Info-Metrics 32
	Information, Probabilities, and Entropy 32
	Information Fundamentals 32
	Information and Probabilities 37
	Information and Entropy 39
	Information Gain and Multiple Information Sources 43
	Basic Relationships 43
	Entropy and the Grouping Property 44
	Relative Entropy 46
	Mutual Information 47
	Axioms and Properties 49
	Shannon's Axioms 49

4. Entropy Maximization

Formulation and Solution: The Basic Framework 60

Information, Model, and Solution: The Linear Constraints Case 60

Model Specification 60

The Method of Lagrange Multipliers: A Simple Derivation 61

Information, Model, and Solution: The Generalized Constraints Case 68

Basic Properties of the Maximal Entropy Distribution 71

Discussion 72

Uniformity, Uncertainty, and the Solution 72

Conjugate Variables 74

Lagrange Multipliers and Information 76

The Concentrated Framework 79

Examples in an Ideal Setting 82

Geometric Moment Information 82

Arithmetic Moment Information 83

Joint Scale and Scale-Free Moment Information 87

Likelihood, Information, and Maximum Entropy: A Qualitative

Discussion 87

5. Inference in the Real World 107

Single-Parameter Problems 108

Exponential Distributions and Scales 108

Distribution of Rainfall 108

The Barometric Formula 110

Power and Pareto Laws: Scale-Free Distributions 112

Distribution of Gross Domestic Products 113

Multi-Parameter Problems 114

Size Distribution: An Industry Simulation 114

Incorporating Inequalities: Portfolio Allocation 117

Ecological Networks 122

Background 123

A Simple Info-Metrics Model 124

Efficient Network Aggregation 126

6. Advanced Inference in the Real World 135

Interval Information 136

Theory 136

Conjugate Variables 139

Weather Pattern Analysis: The Case of New York City 140

Treatment Decision for Learning Disabilities 143

Background Information and Inferential Model 143

A Simulated Example 145

Brain Cancer: Analysis and Diagnostics 147

The Information 148

	Bayesian Updating: Individual Provabilities 154	
7.	Efficiency, Sufficiency, and Optimality 165	
	Basic Properties 166	
	Optimality 166	
	Implications of Small Variations 167	
	Efficiency 169	
	Statistical Efficiency 169	
	Computational Efficiency 175	
	Sufficiency 176	
	Concentration Theorem 178	
	Conditional Limit Theorem 180	
	Information Compression 180	
8.	Thor mornance	
	A Preliminary Definition 195	
	Entropy Deficiency: Minimum Cross Entropy 196	
	Grouping Property 200	
	Surprisal Analysis 209	
	Formulation 209	211
	Extension: Unknown Expected Values or Dependent Variables	211
	Transformation Groups 211	
	The Basics 212	
	Simple Examples 215	
	Maximum Entropy Priors 221	
	Empirical Priors 221	
	Priors, Treatment Effect, and Propensity Score Functions 222	
9.	A Complete Info-Metrics Framework 231	
	Information, Uncertainty, and Noise 232	
	Formulation and Solution 234	
	A Simple Example with Noisy Constraints 242	
	The Concentrated Framework 245	
	A Framework for Inferring Theories and Consistent Models 249	
	Examples in an Uncertain Setting 250	
	Theory Uncertainty and Approximate Theory: Markov Process	250
	Example: Mixed Models in a Non-Ideal Setting 254	
	Uncertainty 250	

The Optimal Solution 259

Lagrange Multipliers 261
The Stochastic Constraints 262

The Support Space 262

The Cost of Accommodating Uncertainty 264

The Surprisal 151

Visual Representation of the Info-Metrics Framework 264 Adding Priors 268

10. Modeling and Theories 281

Core Questions 282

Basic Building Blocks 284

Problem and Entities 284

Information and Constraints 285

Incorporating Priors 286

Validation and Falsification 286

Prediction 288

A Detailed Social Science Example 288

Characterizing the Problem 288

Introducing the Basic Entities 289

Information and Constraints 291

Production 291

Consumption 292

Supply and Demand 292

Individual Preferences 292

Budget Constraints 293

The Statistical Equilibrium 294

Economic Entropy: Concentrated Model 296

Prices, Lagrange Multipliers, and Preferences 297

Priors, Validation, and Prediction 298

Model Summary 299

Other Classical Examples 300

11. Causal Inference via Constraint Satisfaction 307

Definitions 308

Info-Metrics and Nonmonotonic Reasoning 309

Nonmonotonic Reasoning and Grouping 314

Typicality and Info-Metrics 316

The Principle of Causation 316

Info-Metrics and Causal Inference 318

Causality, Inference, and Markov Transition Probabilities: An

Example 319

The Model 320

Inferred Causal Influence 322

12. Info-Metrics and Statistical Inference: Discrete Problems 334

Discrete Choice Models: Statement of the Problem 335

Example: A Die and Discrete Choice Models 335

Definitions and Problem Specification 339

The Unconstrained Model as a Maximum Likelihood 340

The Constrained Optimization Model 341 The Info-Metrics Framework: A Generalized Likelihood 343 Real-World Examples 345 Tailoring Political Messages and Testing the Impact of Negative Messages 345 Background on the Congressional Race and the Survey 346 Inference, Prediction, and the Effect of Different Messages 346 Is There Racial Discrimination in Home Mortgage Lending? 347 Background on Loans, Minorities, and Sample Size 347 Inference, Marginal Effects, Prediction, and Discrimination The Benefits of Info-Metrics for Inference in Discrete Choice Problems 351

13. Info-Metrics and Statistical Inference: Continuous Problems 357 Continuous Regression Models: Statement of the Problem Definitions and Problem Specification 359 Unconstrained Models in Traditional Inference Rethinking the Problem as a Constrained Optimization A Basic Model 361

A General Information-Theoretic Model

Generalized Entropies 364

Information-Theoretic Methods of Inference: Zero-Moment Conditions 367

Specific Cases: Empirical and Euclidean Likelihoods 367 Exploring a Power Law: Shannon Entropy Versus Empirical Likelihood 371

Theoretical and Empirical Examples

Information-Theoretic Methods of Inference: Stochastic Moment Conditions

The Support Spaces 380 A Simulated Example 381

Misspecification 386

The Benefits of Info-Metrics for Inference in Continuous Problems 388 Information and Model Comparison

14. New Applications Across Disciplines 411

Option Pricing 412

Simple Case: One Option 413 Generalized Case: Inferring the Equilibrium Distribution Implications and Significance 418

Predicting Coronary Artery Disease 418 Data and Definitions 419 Analyses and Results The Complete Sample 420

Out-of-Sample Prediction 423
Sensitivity Analysis and Simulated Scenarios 424
Implications and Significance 425

Improved Election Prediction Using Priors on Individuals 426

Analyses and Results 427

The Data 427

The Priors and Analyses 428

Implications and Significance 431

Predicting Dose Effect: Drug-Induced Liver Injury 432

Medical Background and Objective 433

Data and Definitions 434

Inference and Predictions 434

A Linear Model 434

Analyzing the Residuals: Extreme Events 437
Implications and Significance 439

Epilogue 446

List of Symbols 449 Index 451