CONTENTS IN BRIEF

Contents in detail	viii	
Chapter 1: ORIGINS	1	
Chapter 2: GENOMES	43	
Chapter 3: CELLS	91	
Chapter 4: METABOLISM	167	
Chapter 5: DEVELOPMENT	301	
Chapter 6: ENVIRONMENTAL SIGNALS	377	
Chapter 7: ENVIRONMENTAL STRESS	437	
Chapter 8: INTERACTIONS WITH OTHER ORGANISMS	499	
Chapter 9: DOMESTICATION AND AGRICULTURE	573	

CONTENTS

Preface		V
Acknowledgments		vi
Con	itents in Brief	vii
Cha	pter 1 Origins	1
1.1		
1.1	Earth, Cells, and Photosynthesis	2
	The earth formed 4.6 billion years ago	2
	Photosynthesis evolved by 3.8 billion years ago	4
	Oxygen-producing photosynthesis was	-
	widespread by 2.2 billion years ago	5
	Photosynthetic cyanobacteria produced an	
	oxygen-rich atmosphere	6
	Early life on earth evolved in the absence of	6
	a protective atmospheric ozone layer	6
1.0		
1.2	Eukaryotic Cells	7
	Photosynthetic eukaryotic cells arose from two	-
	endosymbiotic events	7
	Several groups of photosynthetic organisms are	
	derived from the endosymbiotic event that gave rise to plastids	8
	Fossil evidence indicates that eukaryotic organisms	9
	had evolved by 2.7 billion years ago and	
	multicellular organisms by 1.25 billion years ago	10
	Animals and algae diversified in the Early	10
	Cambrian Period	11
	Box 1–1 What DNA Can Reveal about Phylogeny	
	and Evolution	14
1.3	Land Plants	12
	Green plants are monophyletic	13
	Land plants may be descended from plants related	19
	to charophycean (charophyte) algae	13
	Microfossils indicate that the first land plants	
	appeared in the Middle Ordovician Period,	
	about 475 million years ago	15
	Plant diversity increased in the Silurian and	
	Devonian Periods	16
	The number of sporangia distinguishes the first	
	land plants from their evolutionary descendants	16

	Increases in plant size were accompanied by evolution of a vascular system	18
	Some of the earliest vascular plants were related to extant lycophytes	19
	Horsetails, ferns, and seed plants are derived from	19
	a leafless group of plants of the Early Devonian Period, 400 million years ago	20
	Ferns and horsetails evolved in the Devonian Period	22
	Chemical and cellular complexity increased early in the evolution of land plants	23
	Atmospheric CO_2 and O_2 levels are determined by rates of photosynthesis and carbon burial	24
	The evolution of land plants was at least partly responsible for the decrease in atmospheric CO_2 beginning 450 million years ago	25
	The mid-Paleozoic decrease in atmospheric CO_2 was a driving force in the evolution of big leaves	26
1.4	Seed Plants	27
	Seeds contain the genetic products of fertilization protected by tissue derived from the sporophyte	28
	Seed plants evolved in the Devonian and diversified in the Permian, 290 to 250 million years ago	29
	The sporophyte phase became dominant in the land-plant life cycle in the Devonian Period	30
	Five groups of seed plants live on earth today	33
1.5		33
	Angiosperms appear in the fossil record in the Early Cretaceous Period, about 135 million years ago	34
	Angiosperms evolved in the tropics and then spread to higher latitudes	34
	Amborella trichopoda is sister to all living angiosperms	35
	Eudicots are distinguished from other flowering plants by the number of pollen apertures	37
	The earliest angiosperm flowers were small with many parts	38
	Monocots are a monophyletic group	30
	The grass family (Poaceae) evolved about 60 million years ago but diversified more recently	30

103

Cha	pter 2 Genomes	43
2. 1	The Nuclear Genome: Chromosomes	44
2.2	Chromosomal DNA	45
	Specialized, repetitive DNA sequences are found	
	in the centromeres and telomeres	45
	Nuclear genes are transcribed into several types of RNA	47
	Plant chromosomes contain many mobile	47
	genetic elements	49
2.3	Nuclear Gene Regulation	52
	Regulatory sequences and transcription factors	
	control where and when a gene is transcribed	52
	Gene activity can be regulated by chemical changes in the DNA and proteins of chromatin	57
	Chromatin modification can be inherited through	31
	cell division	59
	Gene function is also controlled at the RNA level	60
	Small regulatory RNAs control mRNA function	61
	Small RNAs can direct chromatin modification to	
	specific DNA sequences	63
	Box 2-1 Transcription Factors: Combinatorial Control	53
2.4	Genome Sequences	64
	The Arabidopsis genome was the first plant genome	
	to be fully sequenced	65
	Genome sequences are analyzed to identify individual genes	65
	Sequencing of the Arabidopsis genome revealed a	
	complexity similar to that of animal genomes and a large proportion of plant-specific genes	66
	Comparisons among plant genomes reveal	66
	conserved and divergent features	68
	Most angiosperms have undergone genome	00
	duplication during their evolution	68
	Genes can acquire new functions by duplication	-
	and divergence	70
	The order of genes is conserved between closely related plant species	72
	eresely related plant species	14
2.5	Genomes and Biotechnology	73
	Mutated genes can be localized on the genome	
	by co-segregation with known markers	74
	Genes that are mutated by insertion of DNA can	_
	be isolated by detecting the inserted sequence	74
	Genes can be screened for mutations at the DNA level independent of phenotype	75
	RNA interference is an alternative method to	13
	knock out gene function	76
	Multigenic inheritance is analyzed by mapping	
	quantitative trait loci (QTLs)	77

	Genome sequencing allows the development of methods to monitor the activity of many genes simultaneously	78
2.6	Cytoplasmic Genomes	79
	Plastids and mitochondria evolved from bacteria engulfed by other cells	80
	Organellar genes do not follow Mendel's laws of inheritance	80
	The genomes of plastids and mitochondria have been reduced during evolution	80
	Most polypeptides in organelles are encoded by the nuclear genome and targeted to the organelles Replication and recombination of plastid DNA is not tightly coupled to cell division	81 82
	Gene expression has common features in plastids and eubacteria	82
	Plastids contain two distinct RNA polymerases	83
	Post-transcriptional processes are important in regulating plastid gene expression	84
	Organellar transcripts undergo RNA editing	85
	Post-translational processes contribute to maintaining the correct ratio of nuclear- and plastid-encoded components of multisubunit complexes	85
	Developmental regulation of plastid gene expression includes signaling pathways between plastids	03
	and the nucleus	86
Cha	nter 2 Colle	01
Cha 3.1	pter 3 Cells	91
3.1	The Cell Cycle Transition from one phase of the cell cycle to the	93
	next is regulated by a complex set of mechanisms	93
	The cell cycle in plants is controlled by developmental and environmental inputs	98
	Many differentiating cells undergo endoreduplication: DNA replication without nuclear and cell division	99
	Box 3–1 The Nucleus	95
3.2	Cell Division	102
3.2	The cytoskeleton moves cellular components	104
	during cell division	102
	A preprophase band forms at the site of the future $\operatorname{cell}\nolimits$ wall	104
	Replicated pairs of chromosomes are separated on a spindle of microtubules	105
	Microtubules direct the formation of the phragmoplast, which orchestrates deposition of	
	the new cell wall	106
	Vesicles carry material from the Golgi apparatus to the newly forming cell wall	109
	Meiosis is a specialized type of cell division that gives rise to haploid cells and genetic variation	112

Box 3–2 The Cytoskeleton

X CONTENTS

3.3	Organelles	116
	Plastids and mitochondria replicate independent of cell division	117
	Plastid and mitochondrial biogenesis involves	110
	post-translational import of many proteins	119
	The endomembrane system delivers proteins to the cell surface and to vacuoles	122
	Organelles move around the cell on actin filaments	127
3.4	Primary Cell Wall	128
	The matrix of the cell wall consists of pectins and hemicelluloses	129
	Cellulose is synthesized at the cell surface after the cell plate has formed	130
	Carbohydrate components of the cell wall interact to form a strong and flexible structure	132
	Glycoproteins and enzymes have important functions in the cell wall	134
	Plasmodesmata form channels between cells	135
3.5	Cell Expansion and Cell Shape	138
	The properties of the plasma membrane determine	
	the composition of the cell and mediate its interactions with the environment	138
	Proton transport across the plasma membrane generates electrical and proton gradients that drive	
	other transport processes	138
	Movement of water across the plasma membrane is facilitated by aquaporins	141
	Movement of solutes into the cell vacuole drives cell expansion	142
	The vacuole acts as a storage and sequestration compartment	144
	Coordinated ion transport and water movement drive stomatal opening	146
	The direction of cell expansion is determined by microtubules in the cell cortex	149
	Actin filaments direct new material to the cell	
	surface during cell expansion In root hair cells and pollen tubes, cell expansion is	151
	localized to the cell tips	152
3.6	Secondary Cell Wall and Cuticle	154
	The structure and components of the secondary cell wall vary from one cell type to another	154
	Lignin is a major component of many secondary cell walls	155
	Lignification is a defining characteristic of xylem vessels and tracheids	160
	Wood is formed by secondary growth of vascular tissues	160
	The cuticle forms a hydrophobic barrier on the	140
	aerial parts of the plant	163

Cha	pter 4 Metabolism	167
4.1	Control of Metabolic Pathways	169
	Compartmentation increases the potential for metabolic diversity	169
	Metabolic processes are coordinated and controlled by regulation of enzyme activities	170
4.2	Carbon Assimilation: Photosynthesis	174
	Net carbon assimilation occurs in the Calvin cycle	175
	Energy for carbon assimilation is generated by light- harvesting processes in the chloroplast thylakoids	175
	Light energy is captured by chlorophyll molecules and transferred to reaction centers	177
	Electron transfer between two reaction centers via an electron transport chain reduces NADP ⁺ and generates a proton gradient across the thylakoid	
	membrane	180
	The proton gradient drives the synthesis of ATP by an ATP synthase complex	184
	Light-harvesting processes are regulated to maximize the dissipation of excess excitation energy	186
	Carbon assimilation and energy supply are coordinated by complex regulation of Calvin cycle enzymes	188
	Sucrose synthesis is tightly controlled by the rate of photosynthesis and the demand for carbon by nonphotosynthetic parts of the plant	190
	Synthesis of starch allows the photosynthetic rate to remain high when sucrose synthesis is restricted	195
	Box 4–1 Light	178
4.3	Photorespiration	1 97
	Rubisco can use oxygen instead of carbon dioxide as substrate	197
	Photorespiratory metabolism has implications	
	for both the carbon and the nitrogen economy of the leaf	200
	C4 plants eliminate photorespiration by a mechanism that concentrates carbon dioxide	203
4.4	Sucrose Transport	210
	Sucrose moves to nonphotosynthetic parts of the plant via the phloem	210
	Phloem loading may be apoplastic or symplastic	210
	The path of sucrose unloading from the phloem	015
	depends on the type of plant organ	215
	The supply of assimilate from the leaf is coordinated with demand elsewhere in the plant	216
4.5	Nonphotosynthetic Generation of Energy and	
	Precursors	217
	Interconversion of sucrose and hexose phosphates allows sensitive regulation of sucrose metabolism	218

	Glycolysis and the oxidative pentose phosphate pathway generate reducing power, ATP, and precursors for biosynthetic pathways	220
	The Krebs cycle and mitochondrial electron transport chains provide the main source of ATP in nonphotosynthesizing cells	222
	Partitioning of sucrose among "metabolic backbone" pathways is extremely flexible and is related to cell function	230
4.6	Carbon Storage	233
	Sucrose is stored in the vacuole	234
	The starch granule is a semi-crystalline structure synthesized by small families of starch synthases and starch-branching enzymes	235
	The pathway of starch degradation depends on the type of plant organ	239
	Some plants store soluble fructose polymers rather than starch	242
	Storage lipids are synthesized from fatty acids in the endoplasmic reticulum	242
	The fatty acid composition of storage lipids varies among species Triacylglycerols are converted to sugars by	244
	β oxidation and gluconeogenesis Sugars may act as signals that determine the extent	249
	of carbon storage	251
4.7	Plastid Metabolism	253
	Plastids exchange specific metabolites with the cytosol via metabolite transporters	253
	Fatty acids are synthesized by an enzyme complex in plastids	256
	Membrane lipid synthesis in plastids proceeds via a "prokaryotic" pathway different from the "eukaryotic" pathway elsewhere in the cell	259
	Different pathways of terpenoid synthesis in the plastid and the cytosol give rise to different products Tetrapyrroles, the precursors of chlorophyll and	262
	heme, are synthesized in plastids	265
4.8	Nitrogen Assimilation	270
	Plants contain several types of nitrate transporter, regulated in response to different signals	270
	Nitrate reductase activity is regulated at many different levels	272
	Assimilation of nitrogen into amino acids is coupled to demand, nitrate availability, and availability of biosynthetic precursors	274
	Amino acid biosynthesis is partly controlled by	
	feedback regulation Nitrogen is stored as amino acids and specific	276
	storage proteins	281

4.9	Phosphorus, Sulfur, and Iron Assimilation	284
	The availability of phosphorus is a major limitation on plant growth	287
	Sulfur is taken up as sulfate, then reduced to	207
	sulfide and assimilated into cysteine	288
	Iron uptake requires specialized mechanisms to	001
	increase iron solubility in the soil	291
4.10	Movement of Water and Minerals	293
	Water moves from the soil to the leaves, where it	
	is lost in transpiration	293
	Water moves from roots to leaves by a hydraulic mechanism	294
	The movement of mineral nutrients in the plant	
	involves both xylem and phloem	296
Cha	pter 5 Development	301
	Overview of Plant Development	302
	Multicellularity evolved independently in plants	
	and animals	304
	<i>Volvox</i> is a simple system in which to study the genetic basis of multicellularity	305
	the Benetic pasis of multicenduality	909
5.2	Embryo and Seed Development	306
	External cues establish the apical-basal axis in	207
	the <i>Fucus</i> embryo The cell wall directs the fate of cells in the	307
	Fucus embryo	308
	Embryo development in higher plants occurs within the seed	309
	The fate of embryonic cells is defined by	
	their position	310
	Progressive polarization of auxin transporters mediates formation of the basal pole in embryos	312
	Radial cell pattern in the embryonic root and	0.12
	hypocotyl is defined by the SCARECROW	212
	and SHORT ROOT transcription factors Clues from apical-basal and radial patterning of the	313
	embryo are combined to position the root meristem	314
	The shoot meristem is established gradually and	015
	independent of the root meristem The endosperm and embryo develop in parallel	315 316
	Division of the cells that give rise to endosperm	310
	is repressed until fertilization	317
	After embryo and endosperm development, seeds	210
	usually become dormant	319 311
	Box 5–1 Clonal Analysis	311
<mark>5.3</mark>	Root Development	320
	Plant roots evolved independently at least twice	321
	Roots have several zones containing cells at successive stages of differentiation	321
	Addeedatte arabes at attractational	9 <u>4</u> I

xii CONTENTS

	The Arabidopsis root has simple cellular organization	344
	Cell fate depends on the cell's position in the root	323
	Genetic analysis confirms the position-dependent specification of cell type	324
	Lateral root development requires auxin	325
	Box 5–2 Stem Cells in Plants and Animals	323
5.4	Shoot Development	326
	Cells in the shoot apical meristem are organized in radial zones and in concentric layers	327
	The number of new meristem cells is constantly balanced by the number that form new organs	330
	Organ primordia emerge from the flanks of the meristem in a repetitive pattern	332
	Changes in gene expression precede primordium emergence	333
	Development of compound leaves is associated with expression of meristem genes during early	
	leaf development Leaves are shaped by organized cell division	334
	followed by a period of cell expansion and differentiation	335
	Different regions of the leaf primordium acquire different fates early in development	335
	Specific genes regulate the differences between the two faces of the leaf	337
	Lateral growth requires the boundary between the dorsal and ventral sides of the leaf	338
	The leaf reaches its final shape and size by regulated cell division and cell expansion	339
	Leaf growth is accompanied by development of an increasingly elaborate vascular system, which is controlled by auxin transport	340
	Cell communication and oriented cell divisions control the placement of specialized cell types	
	in the leaf Leaf senescence is an active process that retrieves	342
	nutrients from leaves at the end of their useful lifespan	344
	Branches originate from lateral meristems whose growth is influenced by the apical meristem	346
	Internodes grow by cell division and cell elongation, controlled by gibberellins	347
	A layer of meristem cells generates vascular tissues and causes secondary thickening of the stem	349
5.5		350
	Reproductive structures in angiosperms are produced by floral and inflorescence meristems	350
	Development of floral meristems is initiated by a conserved regulatory gene	351
	The expression pattern of LEAFY-like genes determines inflorescence architecture	351
	Flowers vary greatly in appearance, but their basic structure is directed by highly conserved genes	353

	In the ABC model of floral organ identity, each type of organ is determined by a specific combination of homeotic genes	354
	Floral organ identity genes are conserved throughout the angiosperms	357
	Asymmetrical growth of floral organs gives rise to bilaterally symmetrical flowers	358
	Additional regulatory genes control later stages of floral organ development	358
5.6	From Sporophyte to Gametophyte	360
	The male gametophyte is the pollen grain, with a vegetative cell, gametes, and a tough cell wall	360
	Pollen development is aided by the surrounding sporophyte tissues	362
	The female gametophyte develops in the ovule, which contains gametes for the two fertilization events that form the zygote and the endosperm	364
	Development of the female gametophyte is coordinated with development of the sporophyte	
	tissues of the ovule A pollen grain germinates on the carpel and forms a tube that transports the sperm nuclei toward	365
	the ovule Growth of the pollen tube is oriented by long-range	365
	signals in the carpel tissues and short-range signals produced by the ovule	366
	Plants have mechanisms that allow the growth only of pollen tubes carrying specific genes	367
	Self-incompatibility can be gametophytic or sporophytic, depending on the origin of the pollen protein recognized	367
	Angiosperms have double fertilization	369
	Genes from the male and female gametes are not expressed equally after fertilization	370
	Some plants can form seeds without fertilization	371
Cha	pter 6 Environmental Signals	377
6.1	Seed Germination	378
<u>6.2</u>	Light and Photoreceptors	380
	Plant development proceeds along distinct pathways in light and dark	380
	Distinct photoreceptors detect light of different wavelengths	381
	Phytochromes are converted from an inactive to an active form by exposure to red light	382
	Distinct forms of phytochrome have different functions	385
	Phytochrome plays a role in shade avoidance	387
	Cryptochromes are blue-light receptors with specific and overlapping functions	388
	Phototropins are blue-light receptors involved in phototropism, stomatal opening, and chloroplast migration	390
		070

	Some photoreceptors respond to red and blue light Biochemical and genetic studies provide information on the components of the	392
	phytochrome signal-transduction pathway	392
6.3	Seedling Development	395
	Ethylene is synthesized from methionine in a pathway controlled by a family of genes	396
	Genetic analysis has identified components of the ethylene signal-transduction pathway	396
	The ethylene response is negatively regulated by binding of ethylene to its receptors	398
	Inactivation of CTR1 allows activation of downstream components of the ethylene signaling chain	399
	Ethylene interacts with other signaling pathways	400
	The light responses of seedlings are repressed in the dark	400
	COP1 and the COP9 signalosome function by destabilizing proteins required for photomorphogenesis	402
	Brassinosteroids are required for repression of	404
	photomorphogenesis in the dark and other important functions in plant development	403
6.4	Flowering	407
	Reproductive development in many plants is controlled by photoperiod	408
	Phytochromes and cryptochromes act as light receptors in the photoperiodic control of flowering	410
	Circadian rhythms control the expression of many plant genes and affect the photoperiodic control of flowering	411
	Circadian rhythms in plants result from input of environmental signals, a central oscillator, and	413
	output of rhythmic responses Substances produced in leaves can promote or	413
	inhibit flowering	416
	Similar groups of genes are involved in photoperiodic control of flowering in Arabidopsis and in rice	418
	Vernalization is detected in the apex and controls flowering time in many plants	422
	Genetic variation in the control of flowering may be important in the adaptation of plants to different environments	424
	Vernalization response in Arabidopsis involves modification of histones at the <i>FLC</i> gene, which is also regulated by the autonomous flowering pathway	426
	Photoperiodic and vernalization pathways of Arabidopsis converge to regulate the transcription of a small set of floral integrator genes	428
6.5	Root and Shoot Growth	429
913	Plant growth is affected by gravitational stimuli	429

	Statoliths are key to graviperception in stems, hypocotyls, and roots	430
	Columella cells of the root cap are the site of graviperception in the growing root	430
	The endodermal cell layer is the site of graviperception in growing stems and hypocotyls	431
	Mutations in auxin signaling or transport cause defects in root gravitropism	431
	The extent of lateral root elongation varies in response to soil nutrient levels	432
Cha	pter 7 Environmental Stress	437
7.1	Light as Stress	438
	Photosystem II is highly sensitive to too much light	439
	High light induces nonphotochemical quenching, a short-term protective mechanism against	
	photooxidation	439
	Vitamin E–type antioxidants also protect PSII under light stress	443
	Photodamage to photosystem II is quickly repaired in light stress—tolerant plants	444
	Some plants, such as winter evergreens, have mechanisms for longer-term protection against light stress	445
	Low light leads to changes in leaf architecture,	
	chloroplast structure and orientation, and life cycle	447
	Ultraviolet irradiation damages DNA and proteins	449
	Resistance to UV light involves the production of specialized plant metabolites, as well as	451
	morphological changes	451
7.2	High Temperature	452
1.4	High temperature induces the production of	432
	heat shock proteins	453
	Molecular chaperones ensure the correct folding of proteins under all conditions	454
	Families of heat shock proteins play different roles in the heat stress response in different species	454
	Synthesis of heat shock proteins is controlled at the transcriptional level	455
	Some plants have developmental adaptations to heat stress	456
_		454
7.3		456
	Water deficit occurs as a result of drought, salinity, and low temperature	456
	Plants use abscisic acid as a signal to induce responses to water deficit	457
	Plants also use ABA-independent signaling pathways to respond to drought	460
	Abscisic acid regulates stomatal opening to control water loss	461
	Drought-induced proteins synthesize and transport osmolytes	462

7.4	Ion channels and aquaporins are regulated in response to water stress Many plant species adopt metabolic specialization under drought stress Plants that tolerate extreme desiccation have a modified sugar metabolism Many plant species adapted to arid conditions have specialized morphology Rapid life cycling during water availability is common in plants of arid regions Salt Stress Salt stress disrupts homeostasis in water potential and ion distribution Salt stress is signaled by ABA-dependent and ABA-independent pathways Adaptations to salt stress principally involve internal sequestration of salts	 464 465 467 468 471 472 472 472 472 473
	Physiological adaptations to salt stress include	
	modulation of guard cell function Morphological adaptations to salt stress include	476
	salt-secreting trichomes and bladders Osmotic stress stimulates reproduction in some	476
	halophytes	479
7.5	and the second se	479
	Low temperature is similar to water deficit as an environmental stress	479
	Temperate plants acclimated by prior exposure to low temperatures are resistant to freezing damage	480
	Exposure to low temperatures induces cold-regulated (COR) genes	481
	Expression of the transcriptional activator CBF1 induces <i>COR</i> gene expression and cold tolerance	481
	Low-temperature signaling involves increases in intracellular calcium	483
	ABA-dependent and ABA-independent pathways signal in response to cold	483
	Plant species of warm climates are chill-sensitive	483
	Vernalization and cold acclimation are closely linked processes in wheat and other cereal crops	483
7.6	Anaerobic Stress	484
	Water-logging is a cause of hypoxic or anoxic stress for plants	485
	Hypoxia is signaled by a Rop-mediated signaling pathway involving transient induction of ROS	485
	Anoxia induces shifts in primary metabolism	486
	Aerenchyma facilitates long-distance oxygen transport in flood-tolerant plants	488
	Water-logging is associated with other developmental adaptations that increase plant survival	490
	Plants synthesize oxygen-binding proteins under hypoxic conditions	493

7.7	Oxidative Stress	493
	Reactive oxygen species are produced during normal metabolism, but also accumulate under a range of environmental stress conditions	493
	Ascorbate metabolism is central to the elimination	
	of reactive oxygen species	494
	Hydrogen peroxide signals oxidative stress	496
	Ascorbate metabolism is central to responses to oxidative stress	496
Cha	pter 8 Interactions with Other Organisms	499
8.1	Microbial Pathogens	501
	Most pathogens can be classified as biotrophs or necrotrophs	502
	Pathogens enter plants via several different routes	503
	Pathogen infections lead to a broad range of disease symptoms	506
	Many pathogens produce effector molecules that influence their interactions with the host plant	507
	Agrobacterium transfers its DNA (T-DNA) into plant	
	cells to modify plant growth and feed the bacterium, and this transfer system is used in biotechnology	511
	Some pathogen effector molecules are recognized by the plant and trigger defense mechanisms	515
	The products of some bacterial <i>avr</i> genes act inside the plant cell	516
	The functions of fungal and oomycete effector molecules are poorly understood	518
8.2	Pests and Parasites	5 19
	Parasitic nematodes form intimate associations with host plants	519
	Insects cause extensive losses in crop plants, both	501
	directly and by facilitating infection by pathogens	521
	Some plants are plant pathogens	522
8.3	Viruses and Viroids	524
	Viruses and viroids are a diverse and sophisticated	
	set of parasites	524
	Different types of plant viruses have different structures and replication mechanisms	525
8.4	Defenses	529
	Basal defense mechanisms are triggered by pathogen-associated molecular patterns (PAMPs)	530
	R proteins and many other plant proteins involved in defense carry leucine-rich repeats	534
	R genes encode families of proteins involved in recognition and signal transduction	535
	Most R proteins do not directly recognize pathogen effector molecules	536
	R gene polymorphism restricts disease in natural	EDO
	populations	538

	R genes have been selected in crop breeding from the earliest times	540
	Insensitivity to toxins is important in plant defense against necrotrophs	541
	Plants synthesize antibiotic compounds that confer resistance to some microbes and herbivores	542
	Disease resistance is often associated with the localized death of plant cells	548
	In systemic resistance, plants are "immunized" by biological challenges that lead to cell death	549
	Wounding and insect feeding induce complex plant defense mechanisms	552
	Chewing insects provoke release of volatile compounds that attract other insects	554
	RNA silencing is important in plant resistance to viruses	555
<mark>8.5</mark>	Cooperation	557
	Many plant species are pollinated by animals Symbiotic nitrogen fixation involves specialized	557
	interactions of plants and bacteria	560
	Mycorrhizal fungi form intimate symbioses with plant roots	568
Cha	pter 9 Domestication and Agriculture	573
9.1	Domestication	574
	The domestication of crop species involved selection by humans	574
	The difference between maize and its wild ancestor, teosinte, can be explained by allelic variation at five different loci	576
	Alterations in the expression of the gene <i>teosinte</i> <i>branched</i> played an important role in the	370
	domestication of maize	578
	The <i>teosinte glume architecture</i> gene regulates glume size and hardness	579
	Cultivated wheat is polyploid	580
	Cauliflower arose through mutation of a meristem-identity gene	581
	Increase in fruit size occurred early in the domestication of tomato	583

9.2	Scientific Plant Breeding	583
	Scientific approaches to crop plant improvement have resulted in substantial changes in the genetic structure of many crops	583
	Triticale is a synthetic domesticated crop species	585
	Disease resistance is an important determinant of yield and can be addressed both by plant breeding and by crop management	586
	Mutations in genes affecting fruit color, fruit ripening, and fruit drop have been used in tomato breeding programs	587
	In the "Green Revolution," the use of dwarfing mutations of wheat and rice resulted in major increases in crop yield	588
	Heterosis also results in major increases in crop yields	590
	Cytoplasmic male sterility facilitates the production of F1 hybrids	592
9.3	Biotechnology	593
	<i>Agrobacterium</i> -mediated gene transfer is a widely used method for generating transgenic plants	593
	Particle bombardment–mediated gene transfer is an alternative means of generating transgenic plants	594
	Herbicide resistance in transgenic crops facilitates weed control	595
	Transgenic expression of <i>Bacillus thuringiensis</i> (Bt) crystal protein in crop plants confers insect resistance and increased yield	596
	Many different crop plant traits can potentially be improved by transgenesis	596
	"The future is green": The relationship between plants and people will continue to develop	599
Glos	sary	603
Figure Acknowledgments		
Inde	X	635