

# TABLE OF CONTENTS

|                                  |                                                                                   |      |                                                           |                                                                                        |                                                 |    |
|----------------------------------|-----------------------------------------------------------------------------------|------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|----|
| Preface                          | xxi                                                                               | 1.33 | Power Density                                             | 44                                                                                     |                                                 |    |
| Credits and Acknowledgments      | xxv                                                                               | 1.34 | Thermal Efficiency                                        | 45                                                                                     |                                                 |    |
| Author                           | xxvii                                                                             | 1.35 | Control Rods and Their Function                           | 47                                                                                     |                                                 |    |
| CHAPTER 1                        |                                                                                   |      |                                                           | 1.36                                                                                   | Comparing PWR Control Rods and BWR Control Rods | 48 |
| Nuclear Power in the World Today |                                                                                   |      |                                                           | 1.37                                                                                   | Use of the Scram Button and the Word SCRAM      | 51 |
| 1.1                              | Popular Types of Reactors and Their Design Characteristics                        | 1    | 1.38                                                      | Maintaining the Criticality of the Core over Time                                      | 51                                              |    |
| 1.2                              | Number of Power Reactors in the World Today                                       | 1    | 1.39                                                      | Electrical Generating Systems in a Nuclear Power Plant                                 | 51                                              |    |
| 1.3                              | Power Reactor Architectures                                                       | 2    | 1.40                                                      | Steam Generators in Nuclear Power Plants                                               | 51                                              |    |
| 1.4                              | Power Reactors and Their Design Parameters                                        | 6    | 1.41                                                      | Steam Turbines                                                                         | 53                                              |    |
| 1.5                              | Schematic of a Nuclear Power Plant                                                | 7    | 1.42                                                      | Steam Generator and Steam Turbine Pairing                                              | 53                                              |    |
| 1.6                              | Coolants Used in Nuclear Power Plants                                             | 8    | 1.43                                                      | Electrical Generators                                                                  | 53                                              |    |
| 1.7                              | Types of Nuclear Reactor Fuel                                                     | 12   | 1.44                                                      | Common Measurements of Electrical Energy Production                                    | 55                                              |    |
| 1.8                              | Properties of Nuclear Fuel                                                        | 12   | 1.45                                                      | Reviewing What We Have Just Learned                                                    | 58                                              |    |
| 1.9                              | Reactor Pressure Vessels and Their Properties                                     | 13   | References                                                | 58                                                                                     |                                                 |    |
| 1.10                             | Thermal Energy Production from Nuclear Fuel Rods                                  | 16   | Books and Textbooks                                       | 58                                                                                     |                                                 |    |
| 1.11                             | Fuel Rod Cladding                                                                 | 17   | Web References                                            | 58                                                                                     |                                                 |    |
| 1.12                             | Nuclear Fuel Assemblies                                                           | 19   | Questions for the Student                                 | 59                                                                                     |                                                 |    |
| 1.13                             | PWR, BWR, and LMFBR Fuel Assemblies                                               | 20   | Exercises for the Student                                 | 63                                                                                     |                                                 |    |
| 1.14                             | Number of Fuel Rods in a Reactor Fuel Assembly                                    | 21   | CHAPTER 2                                                 |                                                                                        |                                                 |    |
| 1.15                             | Fuel Rods in Square Fuel Assemblies                                               | 22   | Neutrons and Other Important Particles of Reactor Physics |                                                                                        |                                                 |    |
| 1.16                             | Fuel Rods in Hexagonal Fuel Assemblies                                            | 23   | 2.1                                                       | Reactor Physics and the Study of the Neutron                                           | 67                                              |    |
| 1.17                             | Other Fuel Assemblies: CANDU Fuel Assemblies                                      | 23   | 2.1.1                                                     | Nuclear Particles and Particle Types                                                   | 67                                              |    |
| 1.18                             | Characteristics of Reactor Fuel Assemblies                                        | 24   | 2.2                                                       | Visualizing the Atomic Nucleus                                                         | 70                                              |    |
| 1.19                             | Design Parameters for Reactor Fuel Assemblies                                     | 26   | 2.3                                                       | Basic Laws of the Nuclear World: The Conservation of Mass/Energy, Momentum, and Charge | 71                                              |    |
| 1.20                             | Characteristics of Reactor Cores                                                  | 26   | 2.4                                                       | Units for Measuring Nuclear Mass                                                       | 71                                              |    |
| 1.21                             | Core Composition                                                                  | 28   | 2.5                                                       | Protons and Neutrons: The Building Blocks of the Atomic Nucleus                        | 73                                              |    |
| 1.22                             | Lattice Geometries                                                                | 30   | 2.6                                                       | Gluon and the Nuclear Force Field                                                      | 75                                              |    |
| 1.23                             | Unit Cells                                                                        | 31   | 2.7                                                       | Yukawa Potential and the Coulomb Potential                                             | 76                                              |    |
| 1.24                             | The Infinite Lattice Approximation                                                | 32   | 2.8                                                       | Visualizing the Nuclear Binding Force                                                  | 76                                              |    |
| 1.25                             | Accounting for the Fuel-to-Cladding Gap                                           | 33   | 2.9                                                       | Nucleus and Its Surface                                                                | 79                                              |    |
| 1.26                             | Fuel Assembly Loading Schemes                                                     | 34   | 2.10                                                      | Density of the Atomic Nucleus                                                          | 79                                              |    |
| 1.27                             | Reactor Refueling Cycles                                                          | 37   | 2.11                                                      | How the Number of Neutrons Affects the Stability of a Nucleus                          | 80                                              |    |
| 1.28                             | An Overview of Nuclear Fuel Management                                            | 38   | 2.12                                                      | Other Factors That Affect Nuclear Stability                                            | 80                                              |    |
| 1.29                             | Core Loading Patterns                                                             | 40   |                                                           |                                                                                        |                                                 |    |
| 1.30                             | Ways to Measure the Amount of Nuclear Fuel That Has Been Burned                   | 41   |                                                           |                                                                                        |                                                 |    |
| 1.31                             | Alternative Ways for Measuring the Burnup of the Fuel                             | 43   |                                                           |                                                                                        |                                                 |    |
| 1.32                             | Other Important Nuclear Reactor Properties (Power Density and Thermal Efficiency) | 44   |                                                           |                                                                                        |                                                 |    |

|                                                    |                                                                                 |        |                                                                |                                                                                     |     |
|----------------------------------------------------|---------------------------------------------------------------------------------|--------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
| 2.13                                               | Differences between Chemical and Nuclear Bonds                                  | 82     | 3.4                                                            | Prompt and Delayed Neutrons                                                         | 118 |
| 2.13.1                                             | Difference #1: The Strength of the Nuclear and Chemical Bonds                   | 82     | 3.4.1                                                          | The Prompt Neutron Energy Spectrum                                                  | 118 |
| 2.13.2                                             | Difference #2: The Existence of Discrete Energy Levels                          | 82     | 3.4.2                                                          | Understanding the Terms in the Watt Equation                                        | 119 |
| 2.13.3                                             | Difference #3: The Range of the Chemical and Nuclear Forces                     | 84     | 3.5                                                            | The Delayed Neutron Fraction                                                        | 120 |
| 2.14                                               | How Nuclear Energy Is Measured                                                  | 85     | 3.6                                                            | Types of Neutron Interactions                                                       | 120 |
| 2.15                                               | Estimating the Energy of the Neutron, the Proton, and the Electron              | 86     | 3.7                                                            | Modeling the Emission of a Neutron from an Atomic Nucleus                           | 122 |
| 2.16                                               | Conservation of Linear Momentum in Particle Reactions                           | 89     | 3.8                                                            | Coordinate System Independence during Particle Collisions                           | 123 |
| 2.17                                               | Momentum Conservation in Reactions Involving Photons                            | 91     | 3.9                                                            | Momentum Conservation for a Multiparticle System                                    | 125 |
| 2.18                                               | Conservation of the Baryon Number in Nuclear Reactions                          | 92     | 3.10                                                           | What Happens When a Neutron Hits an Atomic Nucleus                                  | 127 |
| 2.19                                               | Some Final Observations                                                         | 92     | 3.11                                                           | Including Photons and Neutrinos in Common Particle Collisions                       | 129 |
| 2.20                                               | Effects of Relativity on Particle Behavior                                      | 93     | 3.12                                                           | The Physics of Head-On Collisions                                                   | 130 |
| 2.21                                               | Effect of Motion on Particle Behavior and Radioactive Decay                     | 95     | 3.13                                                           | Particle Backscattering                                                             | 132 |
| 2.22                                               | Relationship between the Mass and the Energy of Matter Particles                | 96     | 3.14                                                           | Finding the Energy Loss in a Head-On Elastic Collision                              | 133 |
| 2.23                                               | Behavior of Nuclear Particles at Very High Speeds                               | 97     | 3.15                                                           | The Energy Loss in a Glancing Collision                                             | 135 |
| 2.24                                               | Converting Particle Energies to Particle Velocities                             | 99     | 3.16                                                           | Neutron Energy Loss as a Function of Scattering Angle                               | 138 |
| 2.25                                               | Relationship between the Energy of a Neutron and Its Velocity                   | 100    | 3.17                                                           | Scattering Angles in the Laboratory and Center of Mass Systems                      | 138 |
| 2.26                                               | Speed of Photon Propagation in a Material Medium                                | 101    | 3.18                                                           | A More Detailed Look at the Interaction of Neutrons with Matter                     | 141 |
| 2.27                                               | Controlling the Behavior of Nuclear Particles without an Electrical Charge      | 102    | 3.19                                                           | Reviewing Elastic Neutron Scattering                                                | 141 |
| 2.28                                               | Connecting the Microscopic World to the Macroscopic One                         | 103    | 3.20                                                           | Reviewing Inelastic Neutron Scattering                                              | 142 |
| 2.29                                               | Calculating Nuclear Energy from $E = mc^2$                                      | 103    | 3.21                                                           | Neutron Beam Generators                                                             | 143 |
| 2.30                                               | Understanding Nuclear Energy Production                                         | 105    | 3.22                                                           | Generating Cold Neutron Beams                                                       | 143 |
| 2.31                                               | Converting the Kinetic Energy of Nuclear Particles into Thermal Energy and Heat | 105    | 3.23                                                           | Understanding the Difference between Neutron Capture and Neutron Absorption         | 144 |
| References                                         | 107                                                                             | 3.24   | Neutrons and Their Role in the Nuclear Fission Process         | 145                                                                                 |     |
| Books and Textbooks                                | 107                                                                             | 3.25   | Examining the Nuclear Fission of Uranium-235 in More Detail    | 147                                                                                 |     |
| Web References                                     | 107                                                                             | 3.25.1 | Outcome 1                                                      | 147                                                                                 |     |
| Additional References                              | 107                                                                             | 3.25.2 | Outcome 2                                                      | 147                                                                                 |     |
| Questions for the Student                          | 108                                                                             | 3.26   | Fission Products and Fission Product Poisons                   | 148                                                                                 |     |
| Exercises for the Student                          | 111                                                                             | 3.27   | The Energetics of Nuclear Fission                              | 148                                                                                 |     |
| <b>CHAPTER 3</b>                                   |                                                                                 | 3.28   | Standard Notation Used to Describe Different Nuclear Reactions | 149                                                                                 |     |
| <b>Nuclear Particles, Processes, and Reactions</b> |                                                                                 | 3.29   | Some Final Observations regarding Elastic Scattering Reactions | 150                                                                                 |     |
| 3.1                                                | Nuclear Particle Behavior                                                       | 115    | 3.30                                                           | Neutron Moderators and Neutron Kinetic Energy Loss                                  | 152 |
| 3.2                                                | Determining the Behavior of Particles with an Electric Charge                   | 115    | 3.31                                                           | Using a Neutron Balance Equation to Model the Behavior of Large Numbers of Neutrons | 152 |
| 3.3                                                | The Behavior of Neutrons                                                        | 117    | 3.32                                                           | Scattering Angles and Scattering Probabilities                                      | 152 |

|      |                                                     |     |                           |                                               |     |
|------|-----------------------------------------------------|-----|---------------------------|-----------------------------------------------|-----|
| 3.33 | Scattering Angles in Inelastic Collisions           | 155 | 4.22                      | Public Cross Section Libraries                | 194 |
| 3.34 | Neutron Scattering in Heavy Materials               | 155 | 4.23                      | Measuring Avogadro's Number                   | 196 |
| 3.35 | Defining the Differential<br>Scattering Probability | 156 | 4.24                      | Uranium Dioxide and Its Properties            | 198 |
| 3.36 | The Scattering of Alpha Particles                   | 158 | 4.25                      | Important Cross Section<br>Naming Conventions | 200 |
| 3.37 | The Rutherford Scattering Formula                   | 158 | References                | 200                                           |     |
|      | References                                          | 160 | Books and Textbooks       | 200                                           |     |
|      | Books and Textbooks                                 | 160 | Web References            | 201                                           |     |
|      | Web References                                      | 160 | Additional References     | 201                                           |     |
|      | Additional References                               | 160 | Questions for the Student | 202                                           |     |
|      | Questions for the Student                           | 161 | Exercises for the Student | 204                                           |     |
|      | Exercises for the Student                           | 163 |                           |                                               |     |

## CHAPTER 4

### Nuclear Cross Sections, Reaction Probabilities, and Reaction Rates 167

|      |                                                                      |     |
|------|----------------------------------------------------------------------|-----|
| 4.1  | Nuclear Cross Sections and Their Uses                                | 167 |
| 4.2  | Types of Nuclear Cross Sections                                      | 167 |
| 4.3  | Reaction Resonances and<br>Nuclear Cross Sections                    | 171 |
| 4.4  | Reaction Resonances and<br>Compound Nucleus Formation                | 172 |
| 4.5  | Nuclear Cross Sections and Reaction Rates                            | 174 |
| 4.6  | Finding Energy-Dependent<br>Reaction Rates                           | 176 |
| 4.7  | Fast and Thermal Neutron<br>Cross Sections                           | 177 |
| 4.8  | Cross Sections with More<br>than Two Energy Groups                   | 179 |
| 4.9  | Multigroup Approximation                                             | 180 |
| 4.10 | Fission Cross Sections for Neutrons<br>Having Any Kinetic Energy     | 181 |
| 4.11 | Absorption Cross Sections for<br>Neutrons Having Any Energy          | 182 |
| 4.12 | Radiative Capture                                                    | 183 |
| 4.13 | Scattering Cross Sections for<br>Neutrons with Any Kinetic Energy    | 184 |
| 4.14 | Nuclear Properties of<br>Hydrogen and Deuterium                      | 186 |
| 4.15 | Methods for Estimating the<br>Total Cross Section                    | 187 |
| 4.16 | Converting Microscopic Cross<br>Sections to Macroscopic Ones         | 189 |
| 4.17 | A Brief Chemical Primer                                              | 189 |
| 4.18 | A Practical Example of a<br>Cross Section Calculation                | 190 |
| 4.19 | Finding the Cross Sections<br>for a Pure Material                    | 191 |
| 4.20 | Relationship between the Physical<br>Density and the Atomic Density  | 192 |
| 4.21 | Finding Macroscopic Cross Sections<br>for a Complex Nuclear Material | 193 |

## CHAPTER 5

### Cross Section Libraries and Sources of Practical Nuclear Data 207

|      |                                                                                        |     |
|------|----------------------------------------------------------------------------------------|-----|
| 5.1  | Sources of Nuclear Cross Section Data                                                  | 207 |
| 5.2  | A Very Important Table with<br>Three Distinct Parts                                    | 207 |
| 5.3  | Online Plotting Tools (A Tool for Plotting<br>Nuclear Cross Sections— <i>ENDFPLT</i> ) | 215 |
| 5.4  | Cross Sections and ENDF/B<br>Nomenclature                                              | 215 |
| 5.5  | Comparison of Cross Sections for<br>Common Nuclear Materials                           | 217 |
| 5.6  | Finding the Number of Atoms or<br>Molecules in a Given Sample of Material              | 219 |
| 5.7  | Other Applications                                                                     | 221 |
| 5.8  | Thermal Cross Sections for $1/v$<br>and Non- $1/v$ Absorbers                           | 221 |
| 5.9  | Thermal Energy Group Cross Sections                                                    | 223 |
| 5.10 | Cross Sections and the Behavior of the<br>Neutron Flux near a Reaction Resonance       | 225 |
| 5.11 | Creating Neutron Cross Section<br>Libraries from Raw Data                              | 226 |
| 5.12 | Finding the Neutron Energy Spectrum<br>to Build a Group Cross Section Library          | 232 |
| 5.13 | Collapsing the Group Cross<br>Sections When Needed                                     | 233 |
| 5.14 | Conserving the Reaction Rates When<br>Collapsing to a Single Energy Group              | 235 |
| 5.15 | Group Flux and Average<br>Flux within a Group                                          | 239 |
| 5.16 | Using Large Numbers of Energy Groups                                                   | 241 |
| 5.17 | Realistic Reactor Design Practices                                                     | 243 |
| 5.18 | A Simple Design Exercise                                                               | 244 |
| 5.19 | Cross Section Naming Conventions                                                       | 246 |
|      | References                                                                             | 247 |
|      | Books and Textbooks                                                                    | 247 |
|      | Web References                                                                         | 248 |
|      | Additional References                                                                  | 248 |
|      | Questions for the Student                                                              | 249 |
|      | Exercises for the Student                                                              | 250 |

## CHAPTER 6

### Nuclear Fuels, Nuclear Structure, the Mass Defect, and Radioactive Decay 255

- 6.1 Elements, Isotopes, and Nuclear Fuels 255
- 6.2 The Periodic Table 255
- 6.3 Elements and Isotopes in the Periodic Table 257
- 6.4 Man-Made Elements 259
- 6.5 Fractional Atomic Weights and Their Meaning 262
- 6.6 Effect of Binding Energy on Isotopic Rest Mass 264
- 6.7 Fundamental Origins of Fission and Fusion 265
- 6.8 The Mass Defect and Its Origin 265
- 6.9 Nuclear Binding Energy Curve 268
- 6.10 Energy Released due to Missing Nuclear Mass 270
- 6.11 Physical Basis for the Shape of the Nuclear Binding Energy Curve 271
- 6.12 Liquid Drop Model of the Atomic Nucleus 273
  - 6.12.1 The Volume Energy Term 275
  - 6.12.2 The Surface Energy Term 275
  - 6.12.3 The Electrical Energy Term 275
  - 6.12.4 The Asymmetry Energy Term 276
  - 6.12.5 The Pairing Energy Term 276
- 6.13 Interpreting the Results 276
- 6.14 Shell Model of the Nucleus 278
- 6.15 How Nuclear Fission Is Related to Nuclear Structure 279
- 6.16 Nuclear Fuels and Their Properties 280
- 6.17 Difference between Controlled and Uncontrolled Nuclear Reactions 282
- 6.18 The Process of Uranium Enrichment 283
- 6.19 Man-Made Elements and Nuclear Fuels 285
- 6.20 The Element Neptunium 285
- 6.21 The Element Plutonium 286
- 6.22 Production of Plutonium-239 286
- 6.23 Plutonium-239 Decay 288
- 6.24 Other Isotopes of Plutonium 289
- 6.25 Radioactivity and Radioactive Decay 289
- 6.26 Force Imbalances and the Origin of Radioactivity 289
- 6.27 Statistical Probability Distributions Associated with Radioactive Decay 292
- 6.28 Laws of Radioactive Decay 294
- 6.29 Exponential Functions and Their Relationship to Radioactive Decay 295
- 6.30 Equations Governing a Sample of Several Radioactive Elements 296
- 6.31 Measuring the Radioactive Decay Rate 298
- 6.32 Extensions to Radioactive Materials That Can Both Multiply and Decay 300

- 6.33 Time-Dependent Activity of a Radioactive Material 300
- 6.34 Half-Life of a Radioactive Material 301
- 6.35 Half-Lives, Average Lives, Decay Constants, and Doubling Times 302
- 6.36 Understanding the Equations of Secular Equilibrium 304
- 6.37 A Stable Daughter and a Radioactive Parent 306
- 6.38 Isotopic Stability and the Periodic Table 306
- 6.39 Radiation Released by Radioactive Materials 308
- 6.40 Gamma Rays in Nuclear Power Plants 309
- 6.41 How Nuclear Decay Heat Is Produced 309
- References 310
  - Books and Textbooks 310
  - Web References 310
  - Additional References 310
- Questions for the Student 311
- Exercises for the Student 314

## CHAPTER 7

### Nuclear Fission and Nuclear Energy Production 319

- 7.1 Converting Mass into Energy 319
- 7.2 Fission and Fusion: A Review of Fundamental Concepts 319
- 7.3 Uranium and Its Characteristics 321
- 7.4 Energy Output: Fission versus Fusion 323
- 7.5 Splitting of the Uranium Atom: The Process of Induced Fission 323
- 7.6 Understanding the Fission of Uranium-235 324
- 7.7 Capture and Fission Channels for U-235 324
  - 7.7.1 Channel 1: Capture 325
  - 7.7.2 Channel 2: Fission 326
- 7.8 Fission Neutron Energy Spectrum 327
- 7.9 Fast, Epithermal, and Thermal Energy Ranges for Nuclear Fission 329
- 7.10 Mass Distribution of the Fission Fragments 330
- 7.11 Amount of Energy Released from the Fission of Different Nuclear Materials 330
- 7.12 Neutrons Released per Fission 332
- 7.13 Neutrons Released per Neutron Absorbed 333
- 7.14 The Value of Eta for Different Fuel Mixtures 335
- 7.15 Nuclear Energy Release versus Chemical Energy Release 337
  - 7.15.1 An Interesting Comparison 338
- 7.16 Energy Release per Fission 338
- 7.17 The Origin of Nuclear Energy 338
- 7.18 The Threshold Energy for Fission 340
  - 7.18.1 The Critical Energy of Fission 341

|      |                                                                                             |     |
|------|---------------------------------------------------------------------------------------------|-----|
| 7.19 | Some Examples of the Amount of Energy Produced                                              | 342 |
| 7.20 | Differences in Fission Product and Uranium and Plutonium Masses                             | 343 |
| 7.21 | Types of Nuclear Chain Reactions                                                            | 344 |
| 7.22 | The Speed of a Nuclear Chain Reaction                                                       | 348 |
| 7.23 | Neutron Velocities at Different Neutron Energies                                            | 350 |
| 7.24 | The Total Energy Released by a Fission Reaction                                             | 351 |
| 7.25 | Electrical versus Thermal Energy Production                                                 | 352 |
| 7.26 | Finding the Uranium Consumption Rate over Time                                              | 352 |
| 7.27 | Prompt Neutrons and Their Origin                                                            | 353 |
| 7.28 | Delayed Neutrons and Their Origin                                                           | 353 |
| 7.29 | Buildup of Xenon and Samarium                                                               | 357 |
| 7.30 | Cumulative Effect of the Buildup of Fission Product Poisons                                 | 358 |
|      | References                                                                                  | 359 |
|      | Books and Textbooks                                                                         | 359 |
|      | Web References                                                                              | 360 |
|      | Additional References                                                                       | 360 |
|      | Questions for the Student                                                                   | 361 |
|      | Exercises for the Student                                                                   | 363 |
| 8.13 | Collisions between Neutrons and More Complex Materials                                      | 384 |
| 8.14 | The Moderating Ratio                                                                        | 385 |
| 8.15 | The Maxwell–Boltzmann Probability Distribution                                              | 387 |
| 8.16 | The Origin of the Maxwell–Boltzmann Probability Distribution                                | 388 |
| 8.17 | Maxwell’s Derivation of the Maxwell–Boltzmann Probability Distribution                      | 388 |
| 8.18 | Boltzmann’s Constant and Its Relationship to the Maxwell–Boltzmann Probability Distribution | 390 |
| 8.19 | Heavy Water and Some of Its Uses                                                            | 392 |
| 8.20 | The Process of Heavy Water Production                                                       | 393 |
|      | References                                                                                  | 394 |
|      | Books and Textbooks                                                                         | 394 |
|      | Web References                                                                              | 395 |
|      | Additional References                                                                       | 395 |
|      | Questions for the Student                                                                   | 396 |
|      | Exercises for the Student                                                                   | 397 |

## CHAPTER 8

## Neutron Slowing Down Theory, Neutron Moderators, and Reactor Coolants 367

|       |                                                                                                     |     |
|-------|-----------------------------------------------------------------------------------------------------|-----|
| 8.1   | Introduction                                                                                        | 367 |
| 8.2   | Neutron Moderators and Their Function                                                               | 367 |
| 8.3   | Reactor Coolant Comparisons                                                                         | 368 |
| 8.4   | Common Reactor Coolants<br>and Their Properties                                                     | 369 |
| 8.4.1 | Category I: Thermal Water<br>Reactor Coolants                                                       | 369 |
| 8.4.2 | Category II: Gas<br>Reactor Coolants                                                                | 370 |
| 8.4.3 | Category III: Fast Reactor<br>or Liquid Metal Coolants                                              | 370 |
| 8.5   | Fast Reactors versus Thermal Reactors                                                               | 371 |
| 8.6   | Advantages to Moderating a Neutron                                                                  | 374 |
| 8.7   | The Relationship between the<br>Temperature, the Energy, and the<br>Velocity of a Moderated Neutron | 376 |
| 8.8   | The Origin of the Term Thermal Neutron                                                              | 378 |
| 8.9   | The Apparent Temperature<br>of a Fission Neutron                                                    | 379 |
| 8.10  | Neutron Slowing Down Theory                                                                         | 380 |
| 8.11  | The Energy Staircase                                                                                | 380 |
| 8.12  | The Lethargy and Its Application to<br>Neutron Slowing Down Theory                                  | 382 |

CHAPTER 9

## The Neutron Multiplication Factor, the Reactivity, and the Four-Factor Formula 399

|      |                                                                                                                    |     |
|------|--------------------------------------------------------------------------------------------------------------------|-----|
| 9.1  | Uses for the Macroscopic Fission and Absorption Cross Sections                                                     | 399 |
| 9.2  | Meaning of the Effective Multiplication Factor                                                                     | 401 |
| 9.3  | Relationship between the Effective Multiplication Factor and the Neutron Life Cycle                                | 402 |
| 9.4  | Finding the Effective Multiplication Factor and the Infinite Multiplication Factor with More than One Energy Group | 404 |
| 9.5  | Defining the Reactivity                                                                                            | 405 |
| 9.6  | Units for the Reactivity                                                                                           | 407 |
| 9.7  | Effect of Delayed Neutrons on the Value of the Reactivity                                                          | 407 |
| 9.8  | Using the Four-Factor and Six-Factor Formulas to Determine When a Reactor Becomes Critical                         | 408 |
| 9.9  | Unit Cells                                                                                                         | 408 |
| 9.10 | Representing the Fuel to Cladding Gap                                                                              | 410 |
| 9.11 | The Infinite Lattice Approximation                                                                                 | 411 |
| 9.12 | Four-Factor Formula for an Infinite Reactor Lattice                                                                | 412 |
| 9.13 | The First Factor: The Eta of the Fuel                                                                              | 415 |
| 9.14 | The Second Factor: The Fast Fission Factor                                                                         | 416 |
| 9.15 | The Third Factor: The Thermal Utilization                                                                          | 417 |
| 9.16 | The Fourth Factor: The Resonance Escape Probability                                                                | 419 |
| 9.17 | Effects of Resonance Self-Shielding on the Resonance Escape Probability                                            | 422 |

|                           |                                                                                                                  |     |
|---------------------------|------------------------------------------------------------------------------------------------------------------|-----|
| 9.18                      | Classical Form of the Four-Factor Formula                                                                        | 423 |
| 9.19                      | Representative Values of the Four Factors for a Reactor Lattice                                                  | 423 |
| 9.20                      | Understanding the Neutron Life Cycle in a CANDU Reactor Unit Cell                                                | 423 |
| 9.21                      | Understanding the Neutron Life Cycle in a Westinghouse PWR Unit Cell                                             | 425 |
| 9.22                      | Understanding the Behavior of the Neutron Population in a Typical Reactor Unit Cell                              | 426 |
| 9.23                      | How the Factors in the Four-Factor Formula Are Affected by Burnup                                                | 427 |
| 9.24                      | Understanding the Limitations of the Four-Factor Formula                                                         | 427 |
| 9.25                      | Definitions of the Instantaneous Reactivity and the Net Reactivity                                               | 429 |
| 9.26                      | How Fuel Burnup Affects the Net Reactivity                                                                       | 430 |
| 9.27                      | Cross Sections Used to Calculate the Infinite Multiplication Factor and the Reactivity in Thermal Water Reactors | 433 |
| References                |                                                                                                                  | 434 |
|                           | Books and Textbooks                                                                                              | 434 |
|                           | Web References                                                                                                   | 434 |
|                           | Additional References                                                                                            | 434 |
| Questions for the Student |                                                                                                                  | 435 |
| Exercises for the Student |                                                                                                                  | 436 |

## CHAPTER 10

### Neutron Leakage, Reactor Criticality, and the Six-Factor Formula 439

|       |                                                                                           |     |
|-------|-------------------------------------------------------------------------------------------|-----|
| 10.1  | Understanding the Purpose of the Six-Factor Formula                                       | 439 |
| 10.2  | Finding the Value of $K_{\text{effective}}$ from $K_{\infty}$ in a Finite Reactor Lattice | 439 |
| 10.3  | Calculating the Fast and Thermal Nonleakage Probabilities                                 | 441 |
| 10.4  | Physical Significance of the Six Factors                                                  | 443 |
| 10.5  | Criticality and Core Composition                                                          | 444 |
| 10.6  | Moderator to Fuel Ratio and the Four-Factor Formula                                       | 446 |
| 10.7  | Optimal Moderator to Fuel Ratios and the Effect of the Pitch on the Value of $K$          | 448 |
| 10.8  | Comparing Hexagonal Fuel Assemblies to Square Ones                                        | 450 |
| 10.9  | Using the Six-Factor Formula to Predict When a System Becomes Critical                    | 451 |
| 10.10 | Some Limitations of the Four-Factor Formula and the Six-Factor Formula                    | 452 |
| 10.11 | Applying the Six-Factor Formula to the Great Natural Nuclear Reactors of Oklo             | 453 |

|                           |                                                                     |     |
|---------------------------|---------------------------------------------------------------------|-----|
| 10.12                     | Estimating the Critical Size of the Oklo Reactors                   | 455 |
| 10.13                     | Other Applications of the Six-Factor Formula                        | 456 |
| 10.14                     | Reactor Characteristics and Some Typical Values of the Neutron Flux | 456 |
| 10.15                     | Understanding the Relationship between the Flux and Power           | 456 |
| 10.16                     | Representative Values of the Flux and the Enrichment                | 457 |
| 10.17                     | Thermal to Fast Neutron Flux Ratios in Thermal Water Reactors       | 458 |
| 10.18                     | Comparing the Shape of the Fast and Thermal Buckling                | 459 |
| 10.19                     | Comparing Core Power Densities                                      | 460 |
| References                |                                                                     | 462 |
|                           | Books and Textbooks                                                 | 462 |
|                           | Web References                                                      | 463 |
|                           | Additional References                                               | 463 |
| Questions for the Student |                                                                     | 464 |
| Exercises for the Student |                                                                     | 466 |

## CHAPTER 11

### An Introduction to Neutron Diffusion Theory and Fick's Law of Diffusion 469

|       |                                                                         |     |
|-------|-------------------------------------------------------------------------|-----|
| 11.1  | Neutrons and Their Flow through Matter                                  | 469 |
| 11.2  | Definition of the Neutron Density                                       | 470 |
| 11.3  | Definition of the Neutron Flux                                          | 471 |
| 11.4  | Definition of the Neutron Current                                       | 473 |
| 11.5  | Fick's Law of Diffusion                                                 | 474 |
| 11.6  | Neutron Diffusion Coefficient and Its Meaning                           | 478 |
| 11.7  | Some Limitations of Fick's Law                                          | 483 |
| 11.8  | Introduction to the Neutron Diffusion Equation                          | 484 |
| 11.9  | Writing an Equation to Conserve Neutrons                                | 485 |
| 11.10 | Adding Sources and Sinks to the Neutron Conservation Equation           | 487 |
| 11.11 | Derivation of the Time-Dependent Neutron Diffusion Equation             | 488 |
| 11.12 | Steady-State Neutron Diffusion Equation                                 | 489 |
| 11.13 | Steady-State Neutron Diffusion Equation with an External Neutron Source | 490 |
| 11.14 | Standard Form of the Steady-State Neutron Diffusion Equation            | 491 |
| 11.15 | Boundary Conditions for the Neutron Diffusion Equation                  | 493 |
| 11.16 | Boundary Conditions for More than One Energy Group                      | 494 |
| 11.17 | Defining the Neutron Diffusion Length                                   | 495 |
| 11.18 | Neutron Diffusion Distance                                              | 496 |

|                                     |                                                                             |     |
|-------------------------------------|-----------------------------------------------------------------------------|-----|
| 11.19                               | Neutron Mean Free Path and Its Relationship to Diffusion Theory             | 499 |
| 11.20                               | Monte Carlo Method: An Alternative to Neutron Diffusion Theory              | 500 |
| 11.21                               | Diffusion Theory versus Transport Theory                                    | 502 |
| 11.22                               | Use of Neutron Diffusion Theory with Control Rods                           | 503 |
| 11.23                               | Assumptions about Neutron Diffusion Theory near a Cylindrical Control Rod   | 504 |
| 11.24                               | Other Uses for the Extrapolation Distance                                   | 505 |
| 11.25                               | Using Diffusion Theory near a BWR Control Rod                               | 506 |
| 11.26                               | How the Diffusion Distance Is Derived                                       | 507 |
| 11.27                               | Finding the Diffusion Distance from a Point Source                          | 508 |
| 11.28                               | Neutron Scattering and the Size of the Neutron Diffusion Coefficient        | 510 |
| References                          |                                                                             | 512 |
|                                     | Books and Textbooks                                                         | 512 |
|                                     | Web References                                                              | 513 |
|                                     | Additional References                                                       | 513 |
| Questions for the Student           |                                                                             | 514 |
| Exercises for the Student           |                                                                             | 516 |
| CHAPTER 12                          |                                                                             | 519 |
| Multigroup Neutron Diffusion Theory |                                                                             |     |
| 12.1                                | Multigroup Neutron Diffusion Theory and Its Applications                    | 519 |
| 12.2                                | Introduction to Multigroup Theory                                           | 519 |
| 12.3                                | Energy-Dependent Diffusion Equation                                         | 519 |
| 12.4                                | Introducing the Two-Group Approximation                                     | 520 |
| 12.5                                | Multigroup Cross Sections                                                   | 522 |
| 12.6                                | Deriving the Multigroup Approximation                                       | 523 |
| 12.7                                | Defining Scattering Cross Sections between Energy Groups                    | 524 |
| 12.8                                | Multigroup Diffusion Coefficients                                           | 525 |
| 12.8.1                              | Alternative Definitions for the Diffusion Coefficient                       | 526 |
| 12.9                                | Neutron Diffusion Equation with Two Energy Groups                           | 526 |
| 12.10                               | Cramer's Rule                                                               | 530 |
| 12.11                               | Solving the Inhomogeneous Neutron Diffusion Equation with Two Energy Groups | 532 |
| 12.12                               | Solving the Two-Group Diffusion Equations in a Finite Reactor Core          | 532 |
| 12.13                               | Deriving the Six-Factor Formula from the Neutron Diffusion Equation         | 533 |
| 12.14                               | Modified One-Group Neutron Diffusion Theory                                 | 534 |
| 12.15                               | Working with the N-Speed Neutron Diffusion Equation                         | 535 |
| 12.16                               | Matrix Form of the Multigroup Diffusion Equations                           | 536 |
| 12.17                               | Fast and Thermal Flux Shapes Predicted by Two-Group Theory                  | 537 |
| 12.18                               | Popular Multigroup Neutron Diffusion Theory Programs                        | 539 |
| 12.19                               | Reactor Licensing Applications                                              | 539 |
| 12.20                               | Performing a Reactor Licensing Analysis with TRACE                          | 540 |
| 12.21                               | Parameters to Use with the Multigroup Equations                             | 542 |
| References                          |                                                                             | 543 |
|                                     | Books and Textbooks                                                         | 543 |
|                                     | Web References                                                              | 543 |
|                                     | Additional References                                                       | 544 |
| Questions for the Student           |                                                                             | 545 |
| Exercises for the Student           |                                                                             | 546 |

## CHAPTER 13

## Solutions to the Steady-State Neutron Diffusion Equation

|       |                                                                           |     |
|-------|---------------------------------------------------------------------------|-----|
| 13.1  | Solutions to the Steady-State Neutron Diffusion Equation for Slab Reactor | 549 |
| 13.2  | Correlating the Power Level to the Neutron Flux                           | 552 |
| 13.3  | A Physical Interpretation for the Geometric Buckling                      | 553 |
| 13.4  | Design Parameters for Different Reactors                                  | 555 |
| 13.5  | Boundary Conditions for the Neutron Flux                                  | 555 |
| 13.6  | Solutions to the Neutron Diffusion Equation in Common Reactor Geometries  | 556 |
| 13.7  | Understanding the Neutron Flux in a Three-Dimensional Rectangular Reactor | 556 |
| 13.8  | Understanding the Flux Shape in a Three-Dimensional Spherical Reactor     | 559 |
| 13.9  | Understanding the Flux Shape in a Three-Dimensional Cylindrical Reactor   | 560 |
| 13.10 | Understanding the Flux Shape in an Infinite Cylindrical Reactor           | 563 |
| 13.11 | Finding the Peak-to-Average Power Ratio in a Bare Core                    | 564 |
| 13.12 | Flux and Power Shaping                                                    | 565 |
| 13.13 | Benefits of Reflected Reactors                                            | 566 |
| 13.14 | Flux Shapes for Fast and Thermal Neutrons in a Reflected Thermal Reactor  | 566 |
| 13.15 | Defining the Reflector Savings and the Albedo                             | 567 |
| 13.16 | Deriving the Reflector Savings from the Diffusion Equation                | 571 |
| 13.17 | Predicting the Size of a Critical Reactor                                 | 574 |

|       |                                                                                   |     |       |                                                                                                              |     |
|-------|-----------------------------------------------------------------------------------|-----|-------|--------------------------------------------------------------------------------------------------------------|-----|
| 13.18 | Differences between the Geometric Buckling with One and Two Energy Groups         | 576 | 14.13 | Simulating Line Sources of Neutrons                                                                          | 617 |
| 13.19 | Optimum Sizes and Shapes for Reactor Cores                                        | 578 | 14.14 | Solutions to the Neutron Diffusion Equation in a Diffusive Medium with a Distributed Source                  | 618 |
| 13.20 | Calculating the Critical Mass for Bare Reactors Having Different Sizes and Shapes | 580 | 14.15 | Solving the Neutron Diffusion Equation with a Distributed Source                                             | 619 |
| 13.21 | Estimating the Effect of a Reflector on the Critical Mass                         | 581 | 14.16 | Two Diffusive Regions with a Distributed Neutron Source in the Interior                                      | 621 |
| 13.22 | Saving Fuel with a Neutron Reflector                                              | 581 | 14.17 | Vacuum Boundary Conditions for the Diffusion Equation                                                        | 623 |
| 13.23 | Dependence of the Buckling and Diffusion Coefficient on Temperature               | 582 | 14.18 | Defining an Energy-Dependent Extrapolation Distance                                                          | 625 |
| 13.24 | Temperature Dependence of the Neutron Mean Free Path                              | 587 | 14.19 | A Planar Neutron Source with the Extrapolated Boundary Condition                                             | 626 |
| 13.25 | Solutions to the Neutron Diffusion Equation with More than One Homogeneous Region | 587 | 14.20 | Solutions to the Neutron Diffusion Equation with More than One Material Region                               | 629 |
| 13.26 | How to Model a Fuel Assembly next to a Reflector                                  | 592 | 14.21 | Introduction to the Iterative Power Method                                                                   | 630 |
| 13.27 | Other Topics                                                                      | 594 | 14.22 | Convergence Criteria and Numerical Errors                                                                    | 632 |
|       | References                                                                        | 594 | 14.23 | Solutions to the Neutron Diffusion Equation near a Burnable Poison                                           | 633 |
|       | Books and Textbooks                                                               | 594 | 14.24 | Time-Dependent Effects                                                                                       | 636 |
|       | Web References                                                                    | 595 | 14.25 | Comparing the Neutron Diffusion Equation to Laplace's Equation, Poisson's Equation, and Helmholtz's Equation | 637 |
|       | Additional References                                                             | 595 | 14.26 | Time-Dependent Neutron Diffusion Theory                                                                      | 639 |
|       | Questions for the Student                                                         | 596 |       | References                                                                                                   | 640 |
|       | Exercises for the Student                                                         | 599 |       | Books and Textbooks                                                                                          | 640 |
|       |                                                                                   |     |       | Web References                                                                                               | 640 |
|       |                                                                                   |     |       | Additional References                                                                                        | 641 |

## CHAPTER 14

### Solving the Neutron Diffusion Equation with a Radioactive Source Term 601

|       |                                                                             |     |
|-------|-----------------------------------------------------------------------------|-----|
| 14.1  | Solutions to the Diffusion Equation with No Fissionable Materials           | 601 |
| 14.2  | Types of Neutron Sources                                                    | 602 |
| 14.3  | General Solutions to the Neutron Diffusion Equation                         | 603 |
| 14.4  | Solutions to the Diffusion Equation with a Neutron Source on the Boundaries | 604 |
| 14.5  | Simple Planar Neutron Source                                                | 605 |
| 14.6  | Point Sources of Neutrons                                                   | 607 |
| 14.7  | Radiation Field from a Point Source in a Vacuum                             | 608 |
| 14.8  | Understanding the Principle of Superposition                                | 610 |
| 14.9  | Some Additional Observations regarding the Principle of Superposition       | 610 |
| 14.10 | Finding the Neutron Flux from Multiple Point Sources                        | 613 |
| 14.11 | Applying the Principle of Superposition to Neutrons in a Vacuum             | 614 |
| 14.12 | Applying the Principle of Superposition to Light Waves                      | 614 |

## CHAPTER 15

### Time-Dependent Reactors and Their Behavior 647

|      |                                                                                                            |     |
|------|------------------------------------------------------------------------------------------------------------|-----|
| 15.1 | Time-Dependent Reactor Behavior                                                                            | 647 |
| 15.2 | Time-Dependent Neutron Production                                                                          | 648 |
| 15.3 | Delayed Neutrons and Their Importance                                                                      | 649 |
| 15.4 | Isotopes That Produce Delayed Neutrons                                                                     | 653 |
| 15.5 | Visualizing How Delayed Neutrons Are Produced                                                              | 655 |
| 15.6 | Time-Dependent Diffusion Equation without Delayed Neutrons                                                 | 656 |
| 15.7 | Finding Simple Solutions to the Time-Dependent Diffusion Equation Using the Separation of Variables Method | 656 |
| 15.8 | Defining the Reactor Period                                                                                | 659 |
| 15.9 | Understanding the Life Cycle of a Prompt Neutron                                                           | 661 |

|       |                                                                            |     |
|-------|----------------------------------------------------------------------------|-----|
| 15.10 | Time-Dependent Diffusion Equation with Delayed Neutrons                    | 662 |
| 15.11 | Finding the Time-Dependent Neutron Flux and Fission Product Concentrations | 664 |
| 15.12 | The Reactor Period and the Reactor Power References                        | 667 |
|       | Books and Textbooks                                                        | 668 |
|       | Web References                                                             | 668 |
|       | Additional References                                                      | 669 |
|       | Questions for the Student                                                  | 670 |
|       | Exercises for the Student                                                  | 671 |

## CHAPTER 16

### The Point Kinetics Approximation and the Inhour Equation 673

|        |                                                                   |     |
|--------|-------------------------------------------------------------------|-----|
| 16.1   | Deriving the Inhour Equation                                      | 673 |
| 16.2   | Graphical Solutions to the Inhour Equation                        | 677 |
| 16.3   | Exact Solutions to the Inhour Equation                            | 679 |
| 16.4   | Reactor Period with Delayed Neutrons                              | 679 |
| 16.5   | Understanding Time-Dependent Reactor Behavior                     | 681 |
| 16.5.1 | Normal or Planned Shutdown                                        | 681 |
| 16.5.2 | Emergency Shutdown                                                | 682 |
| 16.5.3 | Prompt Critical Behavior                                          | 682 |
| 16.6   | Conventional Units for Measuring the Reactivity-Dollars and Cents | 683 |
| 16.7   | Deriving the Prompt Jump and the Prompt Drop Approximations       | 685 |
| 16.8   | Normal Reactor Behavior and Normal Reactivity Swings              | 689 |
| 16.8.1 | Large Positive Reactivity Changes (Increases)                     | 690 |
| 16.8.2 | Large Negative Reactivity Changes (Decreases)                     | 691 |
| 16.8.3 | Supercritical Transients                                          | 693 |
| 16.8.4 | Prompt Supercritical Transient                                    | 693 |
| 16.9   | Solutions to the Inhour Equation with Six Delayed Neutron Groups  | 694 |
| 16.10  | Time-Dependent Behavior of Fast Reactors                          | 696 |
| 16.11  | Finding the Asymptotic Reactor Period                             | 696 |
| 16.12  | Flux and Power Changes Starting from an Arbitrary State           | 698 |
| 16.13  | Understanding the Origin of the Term “Inhour”                     | 699 |
| 16.14  | History of the Inhour Equation and the Unit of the Inhour         | 700 |
| 16.15  | Using the Reactor Period to Measure the Worth of a Control Rod    | 702 |
| 16.16  | Measuring the Point Kinetics Parameters                           | 702 |

|       |                                                                        |     |
|-------|------------------------------------------------------------------------|-----|
| 16.17 | Other Applications of the Point Kinetics Equations                     | 703 |
| 16.18 | Examining the Validity of the Point Kinetics Approximation             | 703 |
| 16.19 | Estimating the Instantaneous Reactor Power Level as a Function of Time | 704 |
| 16.20 | Ways to Measure the Point Kinetics Parameters                          | 708 |
| 16.21 | The Rod Drop Method                                                    | 708 |
| 16.22 | The Rod Oscillator Method                                              | 709 |
| 16.23 | The Pulsed Neutron Source Method                                       | 710 |
| 16.24 | Reactor Noise Analysis                                                 | 711 |
|       | References                                                             | 712 |
|       | Books and Textbooks                                                    | 712 |
|       | Web References                                                         | 713 |
|       | Additional References                                                  | 713 |
|       | Questions for the Student                                              | 714 |
|       | Exercises for the Student                                              | 716 |

## CHAPTER 17

### Burnup, Depletion, and Temperature Feedback 719

|        |                                                                                         |     |
|--------|-----------------------------------------------------------------------------------------|-----|
| 17.1   | Tracking the Burnup of Nuclear Fuel                                                     | 719 |
| 17.2   | Factors That Affect the Life of the Fuel                                                | 721 |
| 17.3   | Buildup of Plutonium in the Core                                                        | 721 |
| 17.4   | Plutonium Production Rate in a Typical Thermal Water Reactor                            | 723 |
| 17.5   | Estimating the Amount of Energy Produced from Plutonium in a Thermal Water Reactor Core | 723 |
| 17.6   | Changes to the Isotopic Composition of the Core                                         | 724 |
| 17.6.1 | Burnable Poisons and Other Neutron Poisons                                              | 724 |
| 17.6.2 | Soluble Neutron Poisons and Their Function                                              | 724 |
| 17.7   | Fuel Management and Plant Operation                                                     | 726 |
| 17.8   | Power Profiles in Low-Leakage Cores                                                     | 728 |
| 17.9   | How Temperature Affects the Reactivity of the Core                                      | 731 |
| 17.10  | Moderator Temperature Coefficient                                                       | 732 |
| 17.11  | Effect of Boric Acid on the Moderator Temperature Coefficient                           | 733 |
| 17.12  | Temperature Feedback with Nucleate or Bulk Boiling                                      | 733 |
| 17.13  | Understanding the Void Coefficient of the Reactivity                                    | 734 |
| 17.14  | The Void Coefficient and Load Following                                                 | 735 |
| 17.15  | Understanding the Fuel Temperature Coefficient                                          | 737 |
| 17.16  | Doppler Broadening and Its Effect on the Resonance Escape Probability                   | 737 |

|                           |                                                                    |                           |            |                                                                  |     |
|---------------------------|--------------------------------------------------------------------|---------------------------|------------|------------------------------------------------------------------|-----|
| 17.17                     | Other Factors That Affect the Fuel Temperature Coefficient         | 740                       | 18.10      | Axial Zoning Schemes                                             | 778 |
| 17.18                     | Time Dependence of the Core Temperature Coefficients               | 741                       | 18.11      | Burnable Poisons within an Individual Fuel Assembly              | 779 |
| 17.19                     | Regulatory Requirements Governing Sudden Reactivity Changes        | 742                       | 18.12      | Burnable Poisons Inside of Reactor Fuel Assemblies               | 781 |
| 17.20                     | Compliance with the Compendium of Federal Regulations and 10 CFR50 | 743                       | 18.13      | Effect of Burnable Poisons on the Flux Shape                     | 782 |
| 17.21                     | Curve-Fitting Methods for Nuclear Data                             | 744                       | 18.14      | Mathematical Description of the Depletion Process                | 782 |
| 17.22                     | The Least Squares Method                                           | 744                       | 18.15      | Fission Product Buildup                                          | 784 |
| 17.23                     | Power Coefficient of the Reactivity                                | 747                       | 18.16      | Understanding the Buildup of Xenon-135 and Samarium-149          | 789 |
| 17.24                     | Finding the Temperature Defect and the Power Defect                | 749                       | 18.17      | Equilibrium Concentrations of Xenon-135 and Samarium-149         | 789 |
| 17.25                     | Isothermal Temperature Coefficient                                 | 749                       | 18.18      | Behavior of Xenon-135 and Samarium-149 after Shutdown            | 791 |
| 17.26                     | Calculating the Power Coefficient during Start-Up                  | 749                       | 18.19      | Xenon Buildup and "Reactor Dead Time"                            | 792 |
| 17.27                     | Calculating the Temperature and Power Defects                      | 750                       | 18.20      | The Concentration of Samarium-149 after Shutdown                 | 792 |
| 17.28                     | Control Systems and Thermal Feedback                               | 751                       | 18.21      | Comparing Fission Product Poisoning in Fast and Thermal Reactors | 793 |
| 17.29                     | Temperature Feedback and the TRIGA Reactor                         | 752                       | 18.22      | Yields of Other Important Fission Products                       | 793 |
| 17.30                     | Understanding How a TRIGA Reactor Works                            | 752                       | 18.23      | Cumulative Effect of the Fission Product Poisons                 | 794 |
| 17.31                     | Power Pulses in a TRIGA Reactor                                    | 756                       | 18.24      | Reactivity Change Caused by the Buildup of Fission Products      | 795 |
| 17.32                     | Reviewing the Effects of Thermal and Temperature Feedback          | 757                       | 18.25      | Cross Section for a Hypothetical Fission Product                 | 797 |
| 17.33                     | Some Additional Observations regarding Temperature Feedback        | 757                       | References | 799                                                              |     |
| References                | 759                                                                | Books and Textbooks       | 799        |                                                                  |     |
| Books and Textbooks       | 759                                                                | Web References            | 800        |                                                                  |     |
| Web References            | 759                                                                | Additional References     | 800        |                                                                  |     |
| Additional References     | 760                                                                | Questions for the Student | 801        |                                                                  |     |
| Questions for the Student | 761                                                                | Exercises for the Student | 802        |                                                                  |     |
| Exercises for the Student | 762                                                                |                           |            |                                                                  |     |

## CHAPTER 18

### Long-Term Changes to the Reactivity of the Core 765

|        |                                                                 |     |
|--------|-----------------------------------------------------------------|-----|
| 18.1   | Tracking the Long-Term Reactivity                               | 765 |
| 18.2   | Core Reactivity as a Function of Burnup                         | 767 |
| 18.3   | Reactivity Changes in One-, Two-, and Three-Batch Cores         | 768 |
| 18.4   | Single-Batch Cores versus Multi-Batch Cores                     | 769 |
| 18.5   | Reactivity Behavior of an N-Batch Core                          | 771 |
| 18.6   | Optimizing the Fuel-Loading Pattern within a Given Cycle        | 774 |
| 18.7   | Optimizing a Reactor Core                                       | 775 |
| 18.8   | Fuel Assembly-Loading Patterns                                  | 776 |
| 18.9   | Core Power Profile as a Function of Burnup                      | 778 |
| 18.9.1 | Maintaining the Fuel Pin Temperatures within Established Limits | 778 |

## CHAPTER 19

### Fuel Assembly Homogenization and Reaction Rate Conservation 805

|      |                                                               |     |
|------|---------------------------------------------------------------|-----|
| 19.1 | A Closer look at the Neutron Diffusion Equation               | 805 |
| 19.2 | Spatial Homogenization of a Reactor Fuel Assembly             | 807 |
| 19.3 | Popular Neutron Diffusion Theory Codes and Their Applications | 809 |
| 19.4 | Homogenizing a Spatially Heterogeneous Region of Space        | 809 |
| 19.5 | Examples of How the Homogenization Process Works              | 812 |
| 19.6 | Fuel Assembly Homogenization and Reactor Super Cells          | 814 |

|                                                       |                                                                                           |     |                           |                                                                           |     |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|---------------------------|---------------------------------------------------------------------------|-----|
| 19.7                                                  | Some Interesting Relationships between the Size, Shape, and Composition of a Reactor Core | 815 | 20.25                     | Effect of the Fuel Type on the Control Rod Worth                          | 862 |
| 19.8                                                  | Thermal Disadvantage Factors and Fuel Assembly Homogenization                             | 819 | 20.26                     | Semantic Differences in the Definition of the Control Rod Worth           | 863 |
| References                                            |                                                                                           | 819 | 20.27                     | Effect of Control Rods on the Axial Power Profile                         | 863 |
| Books and Textbooks                                   |                                                                                           | 819 | 20.28                     | Fast Reactor Control Rods                                                 | 864 |
| Web References                                        |                                                                                           | 820 | 20.29                     | Control Rod Materials and Their Cross Sections                            | 867 |
| Additional References                                 |                                                                                           | 820 | 20.30                     | Control Rod Design Parameters                                             | 868 |
| Questions for the Student                             |                                                                                           | 821 | 20.31                     | Reactor Control Systems and Their Limitations                             | 868 |
| Exercises for the Student                             |                                                                                           | 824 | 20.32                     | Alternative Forms of Reactivity Control                                   | 868 |
|                                                       |                                                                                           |     | References                |                                                                           | 870 |
|                                                       |                                                                                           |     | Books and Textbooks       |                                                                           | 870 |
|                                                       |                                                                                           |     | Web References            |                                                                           | 871 |
|                                                       |                                                                                           |     | Additional References     |                                                                           | 871 |
|                                                       |                                                                                           |     | Questions for the Student |                                                                           | 872 |
|                                                       |                                                                                           |     | Exercises for the Student |                                                                           | 874 |
| <b>CHAPTER 20</b>                                     |                                                                                           |     |                           |                                                                           |     |
| Control Rods, Burnable Poisons, and Chemical Shim 827 |                                                                                           |     |                           |                                                                           |     |
| 20.1                                                  | Control Rods and Their Function                                                           | 827 | 21.1                      | Importance of Fission Product Poisons                                     | 877 |
| 20.2                                                  | Control Rods and Their Origin                                                             | 828 | 21.2                      | Reactivity Changes due to Fission Product Poisons Like Xenon              | 878 |
| 20.3                                                  | Control Rod Designs                                                                       | 830 | 21.3                      | Xenon Behavior during Start-Up, Equilibrium, and Shutdown                 | 878 |
| 20.4                                                  | Control Rod Materials                                                                     | 834 | 21.4                      | Scenario I: Xenon following Start-Up                                      | 879 |
| 20.5                                                  | Burnable and Nonburnable Poisons                                                          | 835 | 21.5                      | Scenario II: Equilibrium Xenon                                            | 880 |
| 20.6                                                  | Soluble Neutron Poisons and Chemical Shim                                                 | 836 | 21.5.1                    | Case 1: A Low Thermal Flux                                                | 881 |
| 20.7                                                  | Burnable Poisons within a Fuel Assembly                                                   | 838 | 21.5.2                    | Case 2: A Moderate Thermal Flux                                           | 881 |
| 20.8                                                  | Burnable Poisons within a Reactor as a Whole                                              | 839 | 21.5.3                    | Case 3: A High Thermal Flux                                               | 881 |
| 20.9                                                  | Effect of Burnable Poisons on the Neutron Flux Shape                                      | 840 | 21.6                      | Scenario III: Shutdown Xenon                                              | 882 |
| 20.10                                                 | Burnable Poison Locations in a Reactor Core                                               | 841 | 21.7                      | Reactor Dead Time and Its Implications                                    | 885 |
| 20.11                                                 | Using Soluble Boron (or Solbor) as a Reactor Control System                               | 841 | 21.8                      | Nonintuitive Xenon Behavior                                               | 886 |
| 20.12                                                 | Reactivity Changes Induced by Control Rods                                                | 842 | 21.9                      | Power Control and Demand Management to Avoid Xenon Imbalances in the Core | 887 |
| 20.13                                                 | Reactivity Changes Induced by Chemical Shim                                               | 843 | 21.10                     | Reactivity Changes due to Samarium Buildup and Decay                      | 888 |
| 20.14                                                 | Correlating the Reactivity Change to the Chemical Shim Concentration                      | 844 | 21.10.1                   | Case 1: The Samarium Concentration following Reactor Start-Up             | 889 |
| 20.15                                                 | Converting from PPM to Grams per Liter                                                    | 846 | 21.10.2                   | Case 2: Equilibrium Samarium                                              | 890 |
| 20.16                                                 | Boric Acid Injection Systems                                                              | 847 | 21.10.3                   | Case 3: Samarium after Shutdown                                           | 891 |
| 20.17                                                 | Comparing PWR and BWR Control Rods                                                        | 847 | 21.11                     | Nuclear Properties of Xenon-135 and Samarium-149                          | 893 |
| 20.18                                                 | Control Rod Banks and Control Rod Guide Tubes                                             | 848 | 21.12                     | How the Reactor Accident at Chernobyl Occurred                            | 894 |
| 20.19                                                 | Origin of the Word SCRAM                                                                  | 850 | 21.13                     | Design Features of the Chernobyl Reactor                                  | 895 |
| 20.20                                                 | Maintaining the Criticality of the Core over Time                                         | 851 | 21.14                     | Buildup of Xenon in the Chernobyl Core                                    | 896 |
| 20.21                                                 | Defining the Worth of a Control Rod                                                       | 853 | 21.15                     | The Chernobyl Accident and Its Aftermath                                  | 897 |
| 20.22                                                 | Estimating the Effect of a Control Rod on the Reactivity                                  | 854 |                           |                                                                           |     |
| 20.23                                                 | How the Control Rod Worth Changes When the Flux Shape Changes                             | 856 |                           |                                                                           |     |
| 20.24                                                 | Reactivity Corrections to Account for Partially Inserted Control Rods                     | 858 |                           |                                                                           |     |

|       |                                                                                                          |     |
|-------|----------------------------------------------------------------------------------------------------------|-----|
| 21.16 | Comparing Chernobyl to Other Reactor Accidents                                                           | 898 |
| 21.17 | Accident Severity and the INES Scale                                                                     | 899 |
| 21.18 | Lessons Learned from the Chernobyl Disaster                                                              | 900 |
| 21.19 | Computer Programs Used to Model Reactor Transients and Reactor Accidents: TRAC, TRACE, RETRAN, and RELAP | 902 |
| 21.20 | Typical Applications for TRACE                                                                           | 903 |
| 21.21 | Using Realistic Cross Sections for Xenon and Samarium                                                    | 906 |
|       | References                                                                                               | 906 |
|       | Books and Textbooks                                                                                      | 906 |
|       | Web References                                                                                           | 906 |
|       | Additional References                                                                                    | 907 |
|       | Questions for the Student                                                                                | 908 |
|       | Exercises for the Student                                                                                | 910 |

## CHAPTER 22

### An Introduction to Neutron Transport Theory 911

|        |                                                                                                |     |
|--------|------------------------------------------------------------------------------------------------|-----|
| 22.1   | An Introduction to Neutron Transport Theory                                                    | 911 |
| 22.2   | Diffusion Theory versus Transport Theory                                                       | 912 |
| 22.3   | Diffusion Theory Concepts in Transport Theory Terminology                                      | 913 |
| 22.4   | Deriving the Neutron Transport Equation                                                        | 917 |
| 22.5   | Finding the Scattering Rate for an Arbitrary Neutron                                           | 919 |
| 22.6   | Boundary Conditions for the Neutron Transport Equation                                         | 920 |
| 22.7   | Reducing the Transport Equation to a More Conventional Form                                    | 920 |
| 22.8   | Showing When Solutions to the Transport Equation Reduce to Solutions to the Diffusion Equation | 922 |
| 22.9   | Simplifications to Neutron Transport Theory                                                    | 922 |
| 22.9.1 | Category I: The Steady-State Transport Equation                                                | 923 |
| 22.9.2 | Category II: The One-Group or One-Speed Transport Equation                                     | 923 |
| 22.9.3 | Category III: The Transport Equation for a Homogeneous Material                                | 923 |
| 22.9.4 | Category IV: The Transport Equation for a Homogeneous Material with Isotropic Scattering       | 923 |
| 22.9.5 | Category V: The Transport Equation with Isotropic Source Terms                                 | 924 |

|       |                                                                                              |     |
|-------|----------------------------------------------------------------------------------------------|-----|
| 22.10 | Difficulties with Obtaining a Solution to the Neutron Transport Equation                     | 924 |
| 22.11 | Deriving the Diffusion Theory Approximation                                                  | 926 |
| 22.12 | Introducing the $P_N$ and $S_N$ Approximations                                               | 929 |
| 22.13 | $P_N$ Approximation                                                                          | 929 |
| 22.14 | $S_N$ Approximation                                                                          | 933 |
| 22.15 | Applying the $S_N$ Method to a Spherical Source                                              | 935 |
| 22.16 | Unit Vector and Dimensional Gradient in More than One Dimension                              | 937 |
| 22.17 | Numerical Methods for Solving the Time-Dependent Transport Equation                          | 939 |
| 22.18 | Using the Transport Equation with Pure Scatters and Absorbers                                | 941 |
| 22.19 | Ray Effects and Their Origin                                                                 | 943 |
| 22.20 | Multigroup Neutron Transport Equation                                                        | 944 |
| 22.21 | How Boundary Conditions Are Handled in Neutron Transport Theory and Neutron Diffusion Theory | 946 |
| 22.22 | Common Types of Neutron Boundary Conditions                                                  | 946 |
| 22.23 | Initial Conditions for Time-Dependent Problems                                               | 946 |
| 22.24 | Boundary Conditions at a Material Interface                                                  | 947 |
| 22.25 | Vacuum Boundary Conditions                                                                   | 948 |
| 22.26 | Diffusion Coefficients and the $P_1$ Approximation                                           | 950 |
| 22.27 | Commercial Computer Programs Used to Solve the Neutron Transport Equation                    | 952 |
| 22.28 | Other Approaches for Solving the Neutron Transport Equation                                  | 952 |
| 22.29 | Visualizing the Angular Neutron Flux                                                         | 953 |
|       | References                                                                                   | 954 |
|       | Books and Textbooks                                                                          | 954 |
|       | Web References                                                                               | 954 |
|       | Additional References                                                                        | 954 |
|       | Questions for the Student                                                                    | 955 |
|       | Exercises for the Student                                                                    | 956 |

## CHAPTER 23

### The Monte Carlo Method and Its Applications to Nuclear Science and Engineering 959

|        |                                                                                     |     |
|--------|-------------------------------------------------------------------------------------|-----|
| 23.1   | An Introduction to the Monte Carlo Method                                           | 959 |
| 23.2   | Random Number Generators and Statistical Probability Distributions                  | 962 |
| 23.3   | Steps in a Monte Carlo Calculation                                                  | 966 |
| 23.3.1 | Step 1: Establish an Initial Direction of Motion and an Initial Particle Energy $E$ | 966 |

|                           |                                                                                            |      |
|---------------------------|--------------------------------------------------------------------------------------------|------|
| 23.3.2                    | Step 2: Find the Distance to the First Collision                                           | 967  |
| 23.3.3                    | Step 3: Determine the Type of Collision                                                    | 968  |
| 23.3.4                    | Step 4: Determine the Direction That the Particle Exits the Collision                      | 968  |
| 23.3.5                    | Step 5: Store the Case History for the Particle until It Is Destroyed or Leaves the System | 970  |
| 23.3.6                    | Step 6: Repeat the Same Process for the Next Particle                                      | 970  |
| 23.4                      | Pros and Cons of Monte Carlo Calculations                                                  | 971  |
| 23.5                      | Statistical Analysis Phase                                                                 | 971  |
| 23.6                      | The Monte Carlo Method and Moore's Law of Computing                                        | 971  |
| 23.7                      | Determining the Error in a Monte Carlo Calculation                                         | 973  |
| 23.8                      | Error Reduction Schemes                                                                    | 974  |
| 23.9                      | Computer Programs That Implement the Monte Carlo Method                                    | 978  |
| 23.10                     | Monte Carlo Calculation of the Fast Fission Factor                                         | 981  |
| 23.11                     | Dealing with a Cylindrical Geometry in a Monte Carlo Simulation                            | 985  |
| 23.12                     | Monte Carlo Calculation of the Resonance Escape Probability                                | 986  |
| 23.13                     | Extensions of the Monte Carlo Method to Control Rods                                       | 989  |
| 23.14                     | Skewed Probability Distributions                                                           | 990  |
| 23.15                     | Finding the Scattering Angles in a Monte Carlo Calculation                                 | 991  |
| 23.16                     | Generating Asymmetric Scattering Angles                                                    | 994  |
| 23.17                     | Using Random Walks to Simulate Particle Diffusion                                          | 997  |
| 23.18                     | Generating Truly Random Numbers                                                            | 999  |
| References                |                                                                                            | 1002 |
| Books and Textbooks       |                                                                                            | 1002 |
| Web References            |                                                                                            | 1002 |
| Additional References     |                                                                                            | 1002 |
| Questions for the Student |                                                                                            | 1003 |
| Exercises for the Student |                                                                                            | 1003 |

## APPENDIX A

### Important Nuclear and Physical Constants 1005

|     |                                                                                  |      |
|-----|----------------------------------------------------------------------------------|------|
| A.1 | Physical Constants and Their Values                                              | 1005 |
| A.2 | Units of Energy and Power                                                        | 1006 |
| A.3 | Relationship between Number of Fissions per Second and Thermal Energy Production | 1006 |
| A.4 | Time and Decay Conversion Factors and Constants                                  | 1006 |
| A.5 | Units of the Reactivity                                                          | 1006 |

## APPENDIX B

### Unit Systems and Conversion Factors 1007

|     |                                            |      |
|-----|--------------------------------------------|------|
| B.1 | Common Unit Systems                        | 1007 |
| B.2 | Prefixes, Primary Units, and Derived Units | 1007 |
| B.3 | Temperature Conversion Formulas            | 1009 |

## APPENDIX C

### Nuclear Cross Sections and Reaction Rates 1011

|      |                                                                       |      |
|------|-----------------------------------------------------------------------|------|
| C.1  | Nuclear Cross Sections                                                | 1011 |
| C.2  | Repositories for Nuclear Cross-Section Data                           | 1011 |
| C.3  | Tools for Plotting Nuclear Cross-Section Data                         | 1011 |
| C.4  | Converting from Microscopic Cross Sections to Macroscopic Ones        | 1015 |
| C.5  | Some Comments on Cross-Section Naming Conventions                     | 1018 |
| C.6  | Finding the Neutron Production Rate                                   | 1019 |
| C.7  | Nuclear Reaction Rates for the Fast and Thermal Energy Groups         | 1019 |
| C.8  | Power Production from Cross-Section Libraries                         | 1021 |
| C.9  | Using Non-1/v Correction Factors to Find Thermal Group Cross Sections | 1021 |
| C.10 | Temperature-Dependent Reaction Rates                                  | 1022 |

## APPENDIX D

### Physical Properties of Important Nuclear Materials 1023

|     |                                                                   |      |
|-----|-------------------------------------------------------------------|------|
| D.1 | Physical Properties of Important Nuclear Materials and Their Uses | 1023 |
|-----|-------------------------------------------------------------------|------|

## APPENDIX E

### Atomic Mass Tables, Half-Lives, and Natural Abundances 1027

|     |                                                        |      |
|-----|--------------------------------------------------------|------|
| E.1 | Atomic Mass Tables, Half-Lives, and Natural Abundances | 1027 |
| E.2 | Finding the Amount of Energy Released from Table E.1   | 1027 |
| E.3 | Important Fission Products                             | 1033 |

## APPENDIX F

### Delayed Neutron Emitters and Their Nuclear Properties 1035

|     |                                    |      |
|-----|------------------------------------|------|
| F.1 | Delayed Neutron Emitting Materials | 1035 |
| F.2 | Features of Delayed Neutrons       | 1035 |
| F.3 | The Role of Bromine-87             | 1038 |

**APPENDIX G**

Attenuation Coefficients for Radiation Shields 1039

- G.1 Types of Attenuation Coefficients and Their Uses 1039
- G.2 Attenuation of a Photon Beam 1041
- G.3 Distinguishing between X-Rays and Gamma Rays 1041

**APPENDIX H**

Diffusion Coefficients, Transport Cross Sections, and Mean Free Paths 1043

- H.1 Neutron Diffusion Coefficient 1043
- H.2 Fick's Law of Diffusion 1043
- H.3 Neutron Diffusion Coefficients for Pure Scatters 1046
- H.4 Finding the Cosine of the Neutron Scattering Angle 1046
- H.5 Reasons for Using the Transport Cross Section Instead of the Total Cross Section 1046
- H.6 Understanding the Mean Free Path 1047
- H.7 The Diffusion Coefficient and the Mean Free Path 1047
- H.8 Typical Values of the Diffusion Coefficient, the Mean Free Path, and the Transport Cross Section for Nuclear Materials 1048
- H.9 The Transport Correction Factor 1048

**APPENDIX I**

Diffusion Parameters for Common Nuclear Materials 1049

- I.1 Reactor Diffusion Parameters 1049

**APPENDIX J**

Common Integrals Used in Nuclear Science and Engineering 1051

- J.1 Common Integrals 1051
- J.2 Definite versus Indefinite Integrals 1051
- J.3 Useful References 1051
- Web References 1052

**APPENDIX K**

Bessel Functions That Appear in the Study of Nuclear Science and Engineering 1053

- K.1 Bessel Functions and Their Origin 1053
- K.2 Types of Bessel Functions 1053
- K.3 Bessel Functions of the First and Second Kind 1053
- K.4 Modified Bessel Functions of the First and Second Kind 1054
- K.5 Using Bessel Functions to Find the Flux Shape in a Bare Cylindrical Reactor 1057
- Web References 1059

**Index** 1061