Contents

Preface, IX		4 From	4 From Embryo to Establishment, 94		
Acknowledgements, x			Introduction, 94		
		4.2	Embryogenesis, 94		
	Origins, 1	4.3	Endosperm, 99		
	.1 Plants – what are they?, 1	4.4	Perisperm, 100		
	.2 Back to the beginning, 1	4.5	Late embryo growth, storage deposition		
	.3 Eukaryotes emerge, 2		and desiccation, 100		
	.4 Photosynthetic eukaryotes – the first 'plants', 3	4.6	Seed coat, 109		
	.5 The greening of Earth – plants invade the land, 4	4.7	'Recalcitrant' seeds, 109		
	.6 Embracing the terrestrial lifestyle, 6	4.8	Apomixis, 109		
	.7 Arrival of the angiosperms, 8	4.9	Seeds and fruit, 110		
1.	.8 Sex and the alternation of generations, 11	4.10	Fruit development and ripening, 112		
2 In	Introduction to Plant Cells, 14		Dormancy and quiescence, 114		
2.	.1 Plant cells, 14	4.12	Germination, 115		
2.	.2 Cell walls, 15	4.13	Establishment, 120		
2.	.3 The plasma membrane, 21	5 Roots	: 124		
2.	.4 Cell compartmentation, 23	5.1	External morphology of roots, 124		
2.	.5 Chloroplasts, 24	5.2	Root anatomy, 124		
2.	.6 Mitochondria, 27	5.3	Root growth, 126		
2.	.7 The nucleus, 29	5.4	Soil chemistry and water relations, 130		
2.	.8 The vacuole, 31	5.5	Plant mineral nutrition, 132		
2.	.9 Endomembrane systems, 31	5.6	Movement of nutrients to the root		
2.	.10 Microbodies/peroxisomes, 32	5.0	surface, 133		
2.	.11 Ribosomes, 34	5.7	Absorption of water and nutrients, 133		
2.	.12 The cytoskeleton, 34	5.8	Mycorrhizae, 139		
2.	.13 The mitotic cell cycle, 36	5.9	Root nodules and nitrogen fixation, 139		
2	.14 Metabolism, 42	5.10	Tropisms, 142		
3 G	Genes, Gene Expression and Development, 56	5.11	Gravitropism in roots, 143		
	.1 Genes, 56		*		
	.2 Gene expression, 59	6 Stem			
	.3 Chloroplasts and mitochondria, 65	6.1	Structure of the stem, 145		
	.4 Control of gene expression – switching	6.2	The young stem, 145		
5	genes on and off, 69	6.3	The shoot apical meristem, 146		
3	.5 Molecular aspects of development, 75	6.4	Shoot organizational forms, 148		
	.6 Plant hormones, 75	6.5	The mature stem, 148		
	.7 Light receptors, 86	6.6	The tallest, largest and oldest plants, 151		
	.8 Concluding comments, 92	6.7	Ageing and senescence, 152		
3.	.o Concluding comments, 72	6.8	Long-distance xylem transport, 154		

8.6

8.7

9.1

Pollination and fertilization, 204

Evolution, 214

Responses to stress, 216

9 Environmental Stresses, 216

	6.9	Translocation in the phloem, 155		9.2	Temperature, 217
	6.10	Biological clocks in plants, 157		9.3	Waterlogging, 221
	6.11	Phototropism – how do stems curve towards		9.4	Drought, 223
		the light?, 160		9.5	Salinity, 226
	6.12	Gravitropism in stems, 160		9.6	Chemical stress, 228
	6.13	Thigmotropism, 161		9.7	Light and radiation, 232
	6.14	Nastic movements, 161	10	Acclir	nation and Adaptation to Environmental
	6.15	Bud dormancy, 163	10		es, 235
7	Leaves	s, 166		10.1	Adaptation and acclimation responses, 235
	7.1	External morphology of leaves, 166		10.2	Temperature, 236
	7.2	The anatomy of the leaf, 166		10.3	Resistance and adaptation to
	7.3	Control of leaf growth and development, 167			waterlogging, 240
	7.4	Photosynthesis, 168		10.4	Resistance and adaptation to drought, 243
	7.5	Photorespiration, 174		10.5	Resistance and adaptation to salinity, 247
	7.6	The photosynthesis/transpiration dilemma, 177		10.6	Tolerance and adaptation to toxic
	7.7	C ₄ photosynthesis, 178			metals, 252
	7.8	Crassulacean acid metabolism (CAM), 181		10.7	Adaptations to light and radiation, 256
	7.9	Sources and sinks, 182	11	Biotic Stresses, 260	Stresses, 260
	7.10	Stomata, 184		11.1	Plant/plant competition, 260
	7.11	Leaf senescence and abscission, 186		11.2	Plant/animal interactions, 265
8	Flower	rs, 189		11.3	Plant pathology, 271
	8.1	Introduction, 189	12	Plants	s and the Future, 284
	8.2	What is a flower?, 189	12	12.1	Climate change, 284
	8.3	Organization of flowers and flowering –		12.2	Loss of plant biodiversity, 288
		inflorescences and life-styles, 191		12.3	Biomass and biofuels derived
	8.4	Formation of flowers, 192			from plants, 291
	8.5	Gametogenesis, 198		12.4	Genetically modified crops, 297
					,r

12.5

Glossary, 302

Index, 309

Conclusion, 300