Contents

1	Thin	king	in	Sy	ystems	
---	------	------	----	----	--------	--

- 1.1 Global Warming
- 1.2 What Is a System?
- 1.3 Examples of Systems in Real Life
 - 1.3.1 A Home Heating System
 - 1.3.2 A Bus Transportation System
 - 1.3.3 A System of Predators and Prey
 - 1.3.4 Controlling the Thickness of Rolled Steel
- 1.4 Similarities Between Disparate Systems
- 1.5 Open and Closed Loop Thinking
- 1.6 System View

1.7 System Types

- 1.7.1 Engineered Systems
- 1.7.2 Natural Systems
- 1.7.3 Social, Political, Economic, and Other Types of Systems
- 1.8 Information Is Fundamental to Systems' Behavior
- 1.9 The Importance of System View
- 1.10 The Way Forward

2 Engineered Systems

21		
2.1	History of Engineered Systems	20
2.2	The Watt Governor	21

2.3 Depiction of Information Flow (Control Loop Diagram)

1

1

2.4	Going Round a Loop	24
	2.4.1 Objective or Set Point	24
	2.4.2 Controller	25
	2.4.3 Actuator	28
	2.4.4 Process	29
	2.4.5 Process Output and Sensor	29
	2.4.6 Feedback	30
2.5	Right Feedback to the Right Person at the Right Time	31
	2.5.1 Improving Chemical Production	32
	2.5.2 Conclusions	34
2.6	Process Characteristics	34
	2.6.1 Instantaneous Response	34
	2.6.2 Delayed Response	34
	2.6.3 Lag	36
	2.6.4 Simple and Cascaded Control Loops	38
2.7	System Interactions and Hierarchies	39
2.8	Simple Feedback Control: Strengths and Limitations	40
2.9	Engineered Systems Since the Days of James Watt	41
Poli	tical, Social, and Biological Systems	45
3.1	Jay W. Forrester and the History of System Dynamics	45
	3.1.1 System Dynamics	46
	3.1.2 Urban Dynamics	47
	3.1.3 World Dynamics	47
	3.1.4 System Dynamics as a Part of Children's Education	47
3.2	Causal Loop Diagram	48
3.3	Feedback	52
	3.3.1 Biofeedback	53
	3.3.2 Dopamine Treatment for Parkinson's Disease	53
	3.3.3 Know Thyself	54
3.4	Dead Time and Lag	56
3.5	System Hierarchy	56
3.6	The System Dynamics of Youth Violence: A Case Study	58
	3.6.1 Overall Project Design	58
	3.6.2 The Development of Causal Loop Diagrams	59
	3.6.3 A Comprehensive Loop Diagram	
	for Youth Violence	61
3.7	The Advantages and Limitations of Causal Loop Diagrams	63
3.8	Systems Are Everywhere	64

ł	The	Fundamental Behavior Patterns	67
	4.1	The Steady State Behavior	67
	4.2	Nonlinearity and Time Variance	69
		4.2.1 Linear and Nonlinear Behaviors	69
		4.2.2 Time Invariant and Variant Behaviors	70
	4.3	Dynamic Behavior Patterns	71
		4.3.1 Growth and Decay	72
		4.3.2 Sally's Bank Account	74
		4.3.3 Rapid Escalation of Arguments Between	
		a Courting Couple	74
		4.3.4 The Chernobyl Disaster	76
		4.3.5 China's Economic Growth	78
	4.4	Oscillation and Instability	80
		4.4.1 A Firsthand Experience of System Oscillation	82
	4.5	Goal Seeking	83
	4.6	Detail Complexity Versus Dynamic Complexity	86
	4.7	The Puzzling Behaviors of Systems	87
5	Mod	leling and Simulation	89
	5.1	What Is a Model?	89
	5.2		91
	5.3	Conceptual Models	92
	5.4	An Interactive Model Is Worth a Thousand Pictures	94
	2	5.4.1 Simulation of a First-Order Lag	96
		5.4.2 Simulation of an Auto Dealership's Inventory and Sales	98
	5.5	An Interactive Model for Youth Violence	99
		5.5.1 Simulation of Youth Violence	100
		5.5.2 Project Benefits	101
	5.6	Black Box or Empirical Models	103
		5.6.1 Artificial Neural Network	103
	5.7	Models for Simulation and Training	106
		5.7.1 Training Astronauts	106
		5.7.2 Training Industrial Plant Operators	107
		5.7.3 Training in an Academic Environment	107
	5.8	Importance of Interactive Modeling and Simulation	108
5	Ont	imization	111
	6.1	What Is Optimization?	111
	6.2	Optimizing Manpower for a Project	113
	· · · ·		+ + ./

6.3	Objectives and Constraints	115
	6.3.1 Constraint Analysis	116
	6.3.2 The Case of Heidi	117
6.4	Biological Systems	118
6.5	Industrial Systems	119
	6.5.1 Multivariable Control	120
	6.5.2 A Fruit Juice Blending System	121
	6.5.3 Model-Based Control	122
	6.5.4 Hill Climbing	125
6.6	Kaizen: Optimization in Small Steps	126
	6.6.1 Kaizen in Daily Life	127
	6.6.2 Kaizen in Manufacturing	128
6.7	An Objective Way to Optimize a Decision-Making Process	129
	6.7.1 Steps for an Objective Decision-Making Process	131
6.8	Optimization: Challenges and Opportunities	132
Dist	ributed Intelligence	137
7.1	A Robust Chilled Water System	138
7.2	Need for a Decentralized Structure	139
7.3	Swarm Intelligence	141
7.4	Distributed Autonomous Systems	142
7.5	Development of Distributed Computation	143
	7.5.1 From Monolithic Software to Subroutines,	
	Objects, and Intelligent Agents	144
7.6	Intelligent Agent Advantage	149
7.7	Intelligent Agent Applications	150
	7.7.1 Daimler's Manufacturing Line Control	150
	7.7.2 Designing of a Smart Grid	151
	7.7.3 Buying and Selling of Electric Power	152
7.8	5	153
Disc	crete Events and Procedures	155
8.1	Why Study Procedures?	155
8.2	Procedures in Engineered Systems	158
1	8.2.1 Formula Variables	160
8.3	Procedural Functions in Social Systems	160
	8.3.1 Taking Care of Abnormal Conditions	161
8.4	Procedural Functions in Natural Systems	161
8.5	Main Characteristics of Procedural Functions	162

	8.6	Import	ance of Discrete and Procedural Functions	164
	8.7	Modeli	ng and Simulation of Procedural Functions	165
9	Unin	tended (Consequences	167
	9.1	Uninter	nded Negatives and Positives	167
		9.1.1	Unintended Negatives	168
		9.1.2	Unintended Benefits	169
	9.2	Exampl	les of Unintended Consequences	169
		9.2.1	The Cobra Effect	169
		9.2.2	Prohibition in the USA	170
		9.2.3	War on Drugs	171
		9.2.4	Mysterious Killer of India's Vultures	173
		9.2.5	The Great Fire of London	174
		9.2.6	Viagra Leads to Wild Life Conservation	174
		9.2.7	Negative Consequences of Increased Sanitization	
			and Sterilization	175
		9.2.8	Aswan High Dam	177
		9.2.9	Australian Iron Ore Mining Boom	179
	9.3	Minimi	izing Unintended Consequences	181
0	The	over He	hits of a System Sayar Darson	185
0	10.1		bits of a System Savvy Person Right Mental and Conceptual Models	185
	10.1	10.1.1	Set Perspective at the Right Level	185
			Close Feedback Loops	186
		10.1.2	Think Dynamically	180
		10.1.3	Document the Models	187
	10.2		nteractive Models That Are Realistic and Useful	187
	10.2	10.2.1	Choose Right Modeling Technique	188
		10.2.1	Recognize Nonlinearity and Time Variance	189
		10.2.2		109
		10.2.5	of a Model	190
	10.3	Ontimi	ize the System	190
	10.5	10.3.1		190
			Minimize Delay and Dead Time	
		10.3.2	Address System Constraints Focus on the Underlying Causes Bather Than	191
		10.9.9	Focus on the Underlying Causes Rather Than	101
		10 2 4	on Symptoms Remove Obstacles Pather Than Duch Harder	191
		10.3.4	Remove Obstacles Rather Than Push Harder	192

10.4	Make Systems More Robust	192
	10.4.1 Minimize Uncontrolled Oscillations	
	and Escalations	193
	10.4.2 Design Decentralized Systems	194
	10.4.3 Promote Redundancy	194
10.5	Strive for Continuous Improvements	195
10.6	Reduce Unintended Consequences	196
10.7	Cultivate a Holistic World View	197
Epilogue:	Role of System Science in the Twenty-First Century	199
Appendix	I: The PID Controller	221
Appendix	II: Guidelines for Drawing Causal-Loop Diagrams	227
Appendix	III: Generic System Behaviors	231
Appendix	IV: Model Building and Simulation Software	241
Appendix	V: Simulation of Manpower Needs for a Project	245
Appendix	VI: Agent-Based Modeling Software	249
Appendix	VII: Simulation of Gender-Based Segregation Patterns	253
Appendix	VIII: Documentation of Procedural Functions	259
Appendix	IX: Example of a Simple Batch Process	267
Terminolo	y	275
Acronyms	10.3.3 Focus on the Underlying Church Micher IIIm on Symptoms Isloo? at enotyping Inubroon?	279
Bibliograj	phy	281
Index		289