Markov chains are central to the understanding of random processes. This is not only because they pervade applications, but also because one can calculate explicitly many quantities of interest. This textbook, aimed ad advanced undergraduate or MSc students with some background in basic probability theory, focusses on Markov chains and develops quickly a coherent and rigorous theory. In a non-technical way, it explains methods of calculation for transition probabilities, hitting probabilities, long-run averages and equilibrium probabilities.

The author presents both discrete-time and continuous-time chains and also discusses reversibility. He uses random walks as important examples, as well as Poisson presses and birth-and-death processes. A distinguishing feature of the book is an introduction to more advanced topics such as martingales and potentials, in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics.

There is a careful selection of exercises and examples drawn both from theory and practice. The book will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.

Cambridge Series in Statistical and Probabilistic Mathematics

Editorial Board:

- R. Gill (Department of Mathematics, Utrecht University)
- B. D. Ripley (Department of Statistics, University of Oxford)
- S. Ross (Department of Industrial Engineering, University of California, Berkeley)
- M. Stein (Department of Statistics, University of Chicago)
- D. Williams (School of Mathematical Sciences, University of Bath)

This series of high quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

80521

Preface

Introduction

1.	Discrete-time Markov chains	1
	1.1 Definition and basic properties	1
	1.2 Class structure	10
	1.3 Hitting times and absorption probabilities	12
	1.4 Strong Markov property	19
	1.5 Recurrence and transience	24
	1.6 Recurrence and transience of random walks	29
	1.7 Invariant distributions	33
	1.8 Convergence to equilibrium	40
	1.9 Time reversal	47
	1.10 Ergodic theorem	52
	1.11 Appendix: recurrence relations	57
	1.12 Appendix: asymptotics for $n!$	58
2.	Continuous-time Markov chains I	60
	2.1 Q-matrices and their exponentials	60
	2.2 Continuous-time random processes	67
	2.3 Some properties of the exponential distribution	70

ix

xiii

Contents

2.4 Poisson processes	73
2.5 Birth processes	81
2.6 Jump chain and holding times	87
2.7 Explosion	90
2.8 Forward and backward equations	93
2.9 Non-minimal chains	103
2.10 Appendix: matrix exponentials	105
3. Continuous-time Markov chains II	108
3.1 Basic properties	108
3.2 Class structure	111
3.3 Hitting times and absorption probabilities	112
3.4 Recurrence and transience	114
3.5 Invariant distributions	117
3.6 Convergence to equilibrium	121
3.7 Time reversal	123
3.8 Ergodic theorem	125
4. Further theory	128
4.1 Martingales	128
4.2 Potential theory	134
4.3 Electrical networks	151
4.4 Brownian motion	159
5. Applications	170
5.1 Markov chains in biology	170
5.2 Queues and queueing networks	179
5.3 Markov chains in resource management	192
5.4 Markov decision processes	197
5.5 Markov chain Monte Carlo	206
6. Appendix: probability and measure	217
6.1 Countable sets and countable sums	217
6.2 Basic facts of measure theory	220
6.3 Probability spaces and expectation	222
6.4 Monotone convergence and Fubini's theorem	223
6.5 Stopping times and the strong Markov property	224.
6.6 Uniqueness of probabilities and independence of σ -	algebras 228
Further reading	232

Index

234