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Markov chains are central to the understanding of random processes. This is not 
only because they pervade applications, but also because one can calculate 
explicitly many quantities of interest. This textbook, aimed ad advanced 
undergraduate or MSc students with some background in basic probability 
theory, focusses on Markov chains and develops quickly a coherent and rigorous 
theory. In a non-technical way, it explains methods of calculation for transition 
probabilities, hitting probabilities, long-run averages and equilibrium probabilities.

The author presents both discrete-time and continuous-time chains and also 
discusses reversibility. He uses random walks as important examples, as well as 
Poisson prcesses and birth-and-death processes. A distinguishing feature of the 
book is an introduction to more advanced topics such as martingales and poten
tials, in the established context of Markov chains. There are applications to 
simulation, economics, optimal control, genetics, queues and many other topics.

There is a careful selection of exercises and examples drawn both from theory and 
practice. The book will therefore be an ideal text either for elementary courses on 
random processes or those that are more oriented towards applications.
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contain applications and discussions of new techniques made possible by advances 
in computational practice.
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