Introduction to the Modeling and Analysis of Complex Systems introduces students to mathematical/computational modeling and analysis developed in the emerging interdisciplinary field of Complex Systems Science. Complex systems are systems made of a large number of microscopic components interacting with each other in nontrivial ways. Many real-world systems can be understood as complex systems, where critically important information resides in the relationships between the parts and not necessarily within the parts themselves. This textbook offers an accessible yet technically-oriented introduction to the modeling and analysis of complex systems. The topics covered include: fundamentals of modeling, basics of dynamical systems, discrete-time models, continuous-time models, bifurcations, chaos, cellular automata, continuous field models, static networks, dynamic networks, and agent-based models. Most of these topics are discussed in two chapters, one focusing on computational modeling and the other on mathematical analysis. This unique approach provides a comprehensive view of related concepts and techniques, and allows readers and instructors to flexibly choose relevant materials based on their objectives and needs. Python sample codes are provided for each modeling example.

Hiroki Sayama, D.Sc., is an Associate Professor in the Department of Systems Science and Industrial Engineering, and the Director of the Center for Collective Dynamics of Complex Systems (CoCo), at Binghamton University, State University of New York. He received his BSc, MSc and DSc in Information Science, all from the University of Tokyo, Japan. He did his postdoctoral work at the New England Complex Systems Institute in Cambridge, Massachusetts, from 1999 to 2002. His research interests include complex dynamical networks, human and social dynamics, collective behaviors, artificial life/chemistry, and interactive systems, among others. He is an expert of mathematical/computational modeling and analysis of various complex systems. He has published more than 100 peer-reviewed journal articles and conference proceedings papers and has edited eight books and conference proceedings about complex systems related topics. His publications have acquired more than 2000 citations as of July 2015. He currently serves as an elected Board Member of the International Society for Artificial Life (ISAL) and as an editorial board member for Complex Adaptive Systems Modeling (SpringerOpen), International Journal of Parallel, Emergent and Distributed Systems (Taylor & Francis), and Applied Network Science (SpringerOpen).

This textbook is also available free online!

textbooks.opensury.org/introduction-to-the-modeling-and-analysis-of-complex-systems

Open SUNY Textbooks is a SUNY Innovative Instruction Technology Grant funded and library funded project that provides incentives to SUNY faculty to create high-quality open textbooks free online for everyone. Libraries are developing new publishing services for publishing open access textbooks to help to reduce the cost of access to higher education and to make publishing open textbooks scalable and sustainable. This pilot project is a unique collaboration designed to encourage a community of practice among libraries and faculty to publish open textbooks.

ľ	Preliminaries	1
1	1 Introduction 1.1 Complex Systems in a Nutshell	3
2	2.3 Modeling Complex Cystems	14 19 21
II	Systems with a Small Number of Variables	27
3	3.1 What Are Dynamical Systems?	29 29 31 32
4	4.1 Discrete-Time Models with Difference Equations	35 35
	4.4 Simulating Discrete-Time Models with Multiple Variables	39 46

5	Disc	crete-Time Models II: Analysis	61
	5.1	Finding Equilibrium Points	61
	5.2	Phase Space Visualization of Continuous-State Discrete-Time Models	62
	5.3	Cobweb Plots for One-Dimensional Iterative Maps	68
	5.4	Graph-Based Phase Space Visualization of Discrete-State Discrete-Time	
		Models	74
	5.5	Variable Rescaling	77
	5.6	Asymptotic Behavior of Discrete-Time Linear Dynamical Systems	81
	5.7	Linear Stability Analysis of Discrete-Time Nonlinear Dynamical Systems	90
6		tinuous-Time Models I: Modeling	99
	6.1	Continuous-Time Models with Differential Equations	
	6.2	Classifications of Model Equations	
	6.3	Connecting Continuous-Time Models with Discrete-Time Models	
	6.4	Simulating Continuous-Time Models	
	6.5	Building Your Own Model Equation	108
7	Con	tinuous-Time Models II: Analysis	111
	7.1	Finding Equilibrium Points	111
	7.2	Phase Space Visualization	
	7.3	Variable Rescaling	
	7.4	Asymptotic Behavior of Continuous-Time Linear Dynamical Systems	
	7.5	Linear Stability Analysis of Nonlinear Dynamical Systems	
	D.,	eerseer took and to bake	101
8		rcations	131
	8.1	What Are Bifurcations?	
	8.2	Bifurcations in 1-D Continuous-Time Models	
	8.3	Hopf Bifurcations in 2-D Continuous-Time Models	
	8.4	Bifurcations in Discrete-Time Models	144
9	Cha		153
	9.1	Chaos in Discrete-Time Models	153
	9.2	Characteristics of Chaos	156
	9.3	Lyapunov Exponent	157
	9.4	Chaos in Continuous-Time Models	162

CC	CONTENTS	
III	Systems with a Large Number of Variables	171
10	Interactive Simulation of Complex Systems 10.1 Simulation of Systems with a Large Number of Variables	174 180
11	Cellular Automata I: Modeling 11.1 Definition of Cellular Automata 11.2 Examples of Simple Binary Cellular Automata Rules 11.3 Simulating Cellular Automata 11.4 Extensions of Cellular Automata 11.5 Examples of Biological Cellular Automata Models	185 190 192 200
	Cellular Automata II: Analysis 12.1 Sizes of Rule Space and Phase Space	211 215
13	Continuous Field Models I: Modeling 13.1 Continuous Field Models with Partial Differential Equations 13.2 Fundamentals of Vector Calculus 13.3 Visualizing Two-Dimensional Scalar and Vector Fields 13.4 Modeling Spatial Movement 13.5 Simulation of Continuous Field Models 13.6 Reaction-Diffusion Systems	229 236 241 249
14	Continuous Field Models II: Analysis 14.1 Finding Equilibrium States	269 269

295

. 295

15 Basics of Networks

15.1 Network Models

xviii	CONTENT
15.3 Constructing Network Models with NetworkX	30
15.4 Visualizing Networks with NetworkX	
15.5 Importing/Exporting Network Data	
15.6 Generating Random Graphs	
16 Dynamical Networks I: Modeling	32
16.1 Dynamical Network Models	32
16.2 Simulating Dynamics on Networks	32
16.3 Simulating Dynamics of Networks	34
16.4 Simulating Adaptive Networks	
17 Dynamical Networks II: Analysis of Network Topologies	371
17.1 Network Size, Density, and Percolation	
17.2 Shortest Path Length	37
17.3 Centralities and Coreness	380
17.4 Clustering	
17.5 Degree Distribution	
17.6 Assortativity	
17.7 Community Structure and Modularity	
18 Dynamical Networks III: Analysis of Network Dynamics	405
18.1 Dynamics of Continuous-State Networks	
18.2 Diffusion on Networks	
18.3 Synchronizability	409
18.4 Mean-Field Approximation of Discrete-State Networks	416
18.5 Mean-Field Approximation on Random Networks	417
18.6 Mean-Field Approximation on Scale-Free Networks	
19 Agent-Based Models	497

465

473

19.1 What Are Agent-Based Models?

19.2 Building an Agent-Based Model .

19.4 Ecological and Evolutionary Models

19.3 Agent-Environment Interaction

Bibliography

Index