CONTENTS

The ir	astitute and its scientific board	V
The st	aff and field of work	VI
1.	INTRODUCTION	1
2.	RESERVOIRS	6
2.1	3 rd International Conference on Reservoir Limnology and Water Quality	6
2.2	Chemistry and loading	8
2.2.1	Dissolved and dispersed substances in reservoir water (Slapy and Římov)	8
2.2.2	Contribution of atmospheric deposition to nitrogen and phosphorus loads of reservoirs	9
2.3	Microbial characteristics of the reservoirs (Slapy and Římov)	11
2.4	Phytoplankton	13
2.4.1	Longitudinal heterogeneity of phosphorus and phytoplankton concentrations	13
	in deep-valley reservoirs	15
2.5	Zooplankton	15
2.5.1	Effect of winter flow regime on spring clonal diversity of cladocerans in a	
	canyon-shaped reservoir	15
2.5.2	Longitudinal heterogeneity of zooplankton	16
2.6	Fish stock composition in the Římov Reservoir in 1997	16
2.7	Dynamic interactions among the components of plankton in reservoir	
	ecosystems - the role of the microbial loop and consequences for water	
	quality	17
2.8	Biological modeling of stratified reservoirs	20
2.9	Phosphorus cycling in a dimictic reservoir - the Seč Reservoir (Czech	
	Republic)	21
3.	LAKES	22
3.1	C fluxes in mountain lakes	22
3.2	Distribution of ciliates in mountain lakes	22
3.3	Biodiversity within microbial food webs, carbon flow and nutrient cycling	
	in acidifield lakes of the Bohemian Forest	24

3.4	Nutrient sources and transformations within acidified glacial lakes and	
	their watershed in the Bohemian Forest	25
4.	SPECIAL INVESTIGATIONS	29
4.1	Fast semi-micro determination of total phsophorus in water	29
4.2	Semi-micro determination of chloride in fresh waters with mercuric	
	thiocyanate method	29
4.3	Experimental modelling of impacts of different bacterial consumers on	
	bacterial community	29
4.3.1	Morphological and compositional shifts in experimental bacterial	
	communities influenced by protists with contrasting feeding modes	29
4.3.2	The impact of a bacterivorous flagellate and filter-feeding cladoceran	
	on the composition of an experimental bacterial community	30
4.3.3	The impact of a bacterivorous flagellate and filter-feeding cladoceran	
	on respiration activity of an experimental bacterial community	31
4.4	Factors affecting filtering setae length of Daphnia galeata	33
4.5	Ingestion of bacteria and microparticles by juvenile fish	33
PURI	ICATIONS	35