Brief Contents | I. Introduction | | | |--|------------------|------------------| | Chapter 1: Overview of the Immune System | 1 | | | Chapter 2: Cells, Organs, and Microenvironments of the Immune System | 31 | | | Chapter 3: Recognition and Response | 69 | | | Linguage and Posterior Pos | | | | II. Innate Immunity | ine-Based Then | | | Chapter 4: Innate Immunity | 113 | | | Chapter 5: The Complement System | 165 | | | III. Adaptive Immunity: Antigen Receptors and MHC | | | | Chapter 6: The Organization and Expression of Lymphocyte Receptor Genes | 205 | | | Chapter 7: The Major Histocompatibility Complex and Antigen Presentation | 249 | | | | ted Falle 3 To C | WOH CARDS | | IV. Adaptive Immunity: Development | | Ile De B | | Chapter 8: T-Cell Development | 293 | Box 19-2 Check | | Chapter 9: B-Cell Development | 321 | | | V. Adaptive Immunity: Effector Responses | | | | Chapter 10: T-Cell Activation, Helper Subset Differentiation, and Memory | 353 | | | Chapter 10: 1-Cell Activation, Helper Subset Differentiation, and Memory Generation Chapter 11: B-Cell Activation, Differentiation, and Memory Generation | 391 | Box 15-3 Type | | | 433 | | | Chapter 12: Effector Responses: Antibody- and Cell-Mediated Immunity | | | | Chapter 13: Barrier Immunity: The Immunology of Mucosa and Skin | 473 | HONOR ELL-OF KON | | Chapter 14: The Adaptive Immune Response in Space and Time | 511 | | | VI. The Immune System in Health and Disease | | BOX 17-3 Influe | | Chapter 15: Allergy, Hypersensitivities, and Chronic Inflammation | 549 | BOX 17-4 ATICAL | | Chapter 16: Tolerance, Autoimmunity, and Transplantation | 593 | | | Chapter 17: Infectious Diseases and Vaccines | 637 | | | Chapter 18: Immunodeficiency Diseases | 681 | | | Chapter 19: Cancer and the Immune System | ~~~ | BOX 15-2 CART | | The state of the state of the How Cytomass and the state of | | | | VII. Experimental Methods | | | | Chapter 20: Experimental Systems and Methods | 759 | | | Appendix I: CD Antigens | A-1 | | | Appendix II: Cytokines and Associated JAK-STAT Signaling Molecules | B-1 | | | Appendix III: Chemokines and Chemokine Receptors | C-1 | | | Glossary | G-1 | 2 ant T-T xos | | Answers to Study Questions | AN-1 | | | Index | I-1 | | ## Contents | Chapter 1: Overview of the Immune
System | 1 | Hematopoietic Stem Cells Differentiate into All Red
and White Blood Cells | 33 | |--|-----|---|--------| | A Historical Perspective of Immunology | 2 | HSCs Differentiate into Myeloid and Lymphoid Blood Cell Lineages | 35 | | Early Vaccination Studies Led the Way to Immunology | 2 | Cells of the Myeloid Lineage Are the First Responders to Infection | 38 | | Vaccination Is an Ongoing, Worldwide Enterprise | 4 | | 30 | | Immunology Is about More than Just Vaccines and Infectious Disease | 6 | Cells of the Lymphoid Lineage Regulate the Adaptive Immune Response | 43 | | • Immunity Involves Both Humoral and Cellular Components | 7 | Primary Lymphoid Organs: Where Immune | 44 000 | | How Are Foreign Substances Recognized by the Immune
System? | 9 | Cells Develop The Site of Hematopoiesis Changes during Embryonic | 47 | | Important Concepts for Understanding the | | Development | 47 | | Mammalian Immune Response | 12 | The Bone Marrow Is the Main Site of Hematopoiesis in the Adult | 50 | | Pathogens Come in Many Forms and Must First Breach
Natural Barriers | 12 | The Thymus Is the Primary Lymphoid Organ Where T Cells Mature | 52 | | The Immune Response Quickly Becomes Tailored to | 1.4 | | 187 | | Suit the Assault | 14 | Secondary Lymphoid Organs: Where the Immune Response Is Initiated | 56 | | Pathogen Recognition Molecules Can Be Encoded as
Genes or Generated by DNA Rearrangement | 15 | Secondary Lymphoid Organs Are Distributed | 0198 | | Tolerance Ensures That the Immune System Avoids Destroying the Host | 16 | throughout the Body and Share Some Anatomical Features | 56 | | The Immune Response Is Composed of Two Interconnected Arms: Innate Immunity and Adaptive | | Blood and Lymphatics Connect Lymphoid Organs and
Infected Tissue | 56 | | Immunity | 17 | The Lymph Node Is a Highly Specialized Secondary Lymphoid Organ | 57 | | Immune Cells and Molecules Can Be Found in Many
Places | 18 | The Spleen Organizes the Immune Response against | 306 | | Adaptive Immune Responses Typically Generate Memory | 21 | Blood-Borne Pathogens | 60 | | of Molecules from Extracellulay Pathogens | | Barrier Organs Also Have Secondary Lymphoid Tissue | 62 | | The Good, Bad, and Ugly of the Immune System | 21 | Tertiary Lymphoid Tissues Also Organize and Maintain an Immune Response | 63 | | Inappropriate or Dysfunctional Immune Responses Can Result in a Range of Disorders | 22 | Conclusion | 65 | | | 22 | References | 66 | | The Immune Response Renders Tissue Transplantation Challenging | 25 | Study Questions | 67 | | Cancer Presents a Unique Challenge to the Immune | | | | | Response Res | 26 | Chapter 3: Recognition and | H 212 | | Conclusion | 26 | Response | 69 | | References | 27 | General Properties of Immune | | | Study Questions | 28 | Receptor-Ligand Interactions | 70 | | Chapter 2: Cells, Organs, and | | Receptor-Ligand Binding Occurs via Multiple
Noncovalent Bonds | 7(| | Microenvironments of the Immune | 31 | How Do We Describe the Strength of Receptor-Ligand | 1215 | | regulated Cell Death Contributes to Pathogen | 01 | Interactions? | 7 | | Hematopoiesis and Cells of the Immune System | 33 | Interactions between Receptors and Ligands Can Be
Multivalent | 7 | | | | anoits at Alterations
| X | | | Combinatorial Expression of Protein Chains Can
Increase Ligand-Binding Diversity | 72 | Immune Responses: The Outcomes of Immune System Recognition | 105 | |----|---|-----|--|------| | | Adaptive Immune Receptor Genes Undergo Rearrangement in Individual Lymphocytes | 73 | Changes in Protein Expression Facilitate Migration of
Leukocytes into Infected Tissues | 105 | | | Levels of Receptor and Ligand Expression Can Vary
during an Immune Response | 73 | Activated Macrophages and Neutrophils May Clear Pathogens without Invoking Adaptive Immunity | 106 | | | Local Concentrations of Ligands May Be Extremely High during Cell-Cell Interactions | 74 | Antigen Activation Optimizes Antigen Presentation
by Dendritic Cells | 106 | | | Many Immune Receptors Include Immunoglobulin Domains | 75 | Cytokine Secretion by Dendritic Cells and T Cells Can Direct the Subsequent Immune Response | 106 | | | Immune Antigen Receptors Can Be Transmembrane, Cytosolic, or Secreted | 76 | Antigen Stimulation by T and B Cells Promotes Their Longer-Term Survival | 107 | | 1 | mmune Antigen Receptor Systems | 77 | Antigen Binding by T Cells Induces Their Division and | | | | The B-Cell Receptor Has the Same Antigen Specificity
as Its Secreted Antibodies | 77 | Differentiation | 107 | | | T-Cell Antigen Receptors Recognize Antigen in the Context of MHC Proteins | 84 | Antigen Binding by B Cells Induces Their Division and
Differentiation | 107 | | 2 | Receptors of Innate Immunity Bind to Conserved | | Conclusion Conclusion Participand Must Fire Company Forms and Must Fire Conclusion | 109 | | | Molecules on Pathogens | 89 | References | 110 | | (| Sytokines and Their Receptors | 91 | Study Questions | 111 | | | Cytokines Are Described by Their Functions and the Distances at Which They Act | 91 | Chapter 4: Innate Immunity | 113 | | | Cytokines Exhibit the Attributes of Pleiotropy, Redundancy | ٧. | Anatomical Barriers to Infection | 116 | | | Synergism, Antagonism, and Cascade Induction Cytokines of the IL-1 Family Promote Proinflammatory | 93 | Epithelial Barriers Prevent Pathogen Entry into the
Body's Interior | 117 | | | Signals | 94 | Antimicrobial Proteins and Peptides Kill Would-Be
Invaders | 117 | | - | Class 1 Cytokines Share a Common Structural Motif But
Have Varied Functions | 94 | Cellular Innate Response Receptors and | mi | | | Class 2 Cytokines Are Grouped into Three Families of Interferons | 95 | Signaling | 120 | | 0 | TNF Family Cytokines May Be Soluble or Membrane-
Bound | | Toll-Like Receptors Initiate Responses to Many Types
of Molecules from Extracellular Pathogens | 120 | | | The IL-17 Family of Cytokines and Receptors Is the Most | 97 | C-Type Lectin Receptors Bind Carbohydrates on the
Surfaces of Extracellular Pathogens | 127 | | | Recently Identified Chemokines Induce the Directed Movement of Leukocytes | 98 | NOD-Like Receptors Bind PAMPs from Cytosolic
Pathogens | 128 | | A | Conceptual Framework for Understanding | | ALRs Bind Cytosolic DNA | 129 | | | | 100 | RLRs Bind Cytosolic Viral RNA | 132 | | | Ligand Binding Can Induce Dimerization or Multimerization of Receptors | 100 | cGAS and STING Are Activated by Cytosolic DNA and Dinucleotides | 133 | | | Ligand Binding Can Induce Phosphorylation of Tyrosine
Residues in Receptors or Receptor-Associated Molecules | 102 | Induced Innate Immunity Effector Mechanisms | Conc | | 1 | Src-Family Kinases Play Important Early Roles in the Activation of Many Immune Cells | 102 | Expression of Innate Immunity Proteins Is Induced by PRR Signaling | 135 | | 7. | Intracellular Adapter Proteins Gather Members of Signaling Pathways | 103 | Phagocytosis Is an Important Mechanism for
Eliminating Pathogens | 139 | | 7. | Common Sequences of Downstream Effector Relays Pass the Signal to the Nucleus | 104 | Regulated Cell Death Contributes to Pathogen Elimination | 143 | | 7. | Not All Ligand-Receptor Signals Result in Transcriptional Alterations | 105 | Local Inflammation Is Triggered by Innate Immune Responses | 145 | | Innate Lymphoid Cells | 146 | Complement Enhances Host Defense against Infection | 185 | |--|----------|--|-----------| | Natural Killer Cells Are ILCs with Cytotoxic Activity | 146 | Complement Acts at the Interface between Innate and Adaptive Immunities | 188 | | ILC Populations Produce Distinct Cytokines and Have Different Roles | 147 | Complement Aids in the Contraction Phase of the
Immune Response | 189 | | Regulation and Evasion of Innate and | | Tt and 70 Teams Income R Calle Form in the Soleen | 50 | | Inflammatory Responses | 148 | The Regulation of Complement Activity | 191 | | Innate and Inflammatory Responses Can Be Harmful | 148 | Complement Activity Is Passively Regulated by Short
Protein Half-Lives and Host Cell Surface Composition | 191 | | Innate and Inflammatory Responses Are Regulated
Both Positively and Negatively | 149 | The C1 Inhibitor, C1INH, Promotes Dissociation of C1 Components | 191 | | Pathogens Have Evolved Mechanisms to Evade Innate
and Inflammatory Responses | 152 | Decay-Accelerating Factor Promotes Decay of C3 Convertases | 191 | | Interactions between the Innate and | | Factor I Degrades C3b and C4b | 193 | | Adaptive Immune Systems | 152 | CD59 (Protectin)
Inhibits the MAC Attack | 195 | | The Innate Immune System Activates Adaptive Immune Responses | 153 | Carboxypeptidases Can Inactivate the Anaphylatoxins | eD-T | | Recognition of Pathogens by Dendritic Cells Influences | Seller | C3a and C5a | 196 | | Helper T-Cell Differentiation | 154 | Complement Deficiencies | 196 | | Some Antigens Containing PAMPs Can Activate B Cells
Independent of Helper T Cells | 155 | Microbial Complement Evasion Strategies | 197 | | Adjuvants Activate Innate Immune Responses That Increase the Effectiveness of Immunizations | 156 | The Evolutionary Origins of the Complement System | 198 | | Some Pathogen Clearance Mechanisms Are Common
to Both Innate and Adaptive Immune Responses | 156 | Conclusion | 200 | | tides Are Generated by Protease Complexes | | References | 201 | | Ubiquity of Innate Immunity | 156 | Study Questions | 202 | | Some Innate Immune System Components Occur
across the Plant and Animal Kingdoms | 157 | Chapter 6: The Organization and
Expression of Lymphocyte | | | Invertebrate and Vertebrate Innate Immune Responses Show Both Similarities and Differences | s
159 | the marker of the manual areas to will into be any properties and in the contract of contr | 205 | | Conclusion | 160 | The Puzzle of Immunoglobulin Gene | | | References | 160 | Structure | 206 | | Study Questions | 162 | Investigators Proposed Two Early Theoretical Models
of Antibody Genetics | 206 | | Chapter 5: The Complement System | 165 | Breakthrough Experiments Revealed That Multiple Gen
Segments Encode the Immunoglobulin Light Chain | e
208 | | The Major Pathways of Complement Activation | 168 | Multigene Organization of Immunoglobulin | ano. | | The Classical Pathway Is Initiated by Antibody Binding to Antigens | 169 | Genes • κ Light-Chain Genes Include V, J, and C Segments | 212 | | gae de la constant | 109 | • λ Light-Chain Genes Include Paired J and C Segments | 212 | | The Lectin Pathway Is Initiated When Soluble Proteins
Recognize Microbial Antigens | 174 | Heavy-Chain Gene Organization Includes V _H , D, J _H , and | Hei
30 | | The Alternative Pathway Is Initiated in Three Distinct Ways | 175 | • The Antibody Genes Found in Mature B Cells Are the | 214 | | The Three Complement Pathways Converge at the | | Product of DNA Recombination | 214 | | Formation of C5 Convertase and Generation of the MAC | 179 | The Mechanism of V(D)J Recombination | 215 | | The Diverse Functions of Complement | 180 | V(D)J Recombination in Lymphocytes Is a Highly
Regulated Sequential Process | 216 | | Complement Receptors Connect Complement-Tagged Pathogens to Effector Cells | 181 | Recombination Is Directed by Recombination Signal Sequences | 217 | | Gene Segments Are Joined by a Diverse Group of Protein V(D)J Recombination Occurs in a Series of | s 218 | Allelic Forms of MHC Genes Are Inherited in Linked
Groups Called Haplotypes | 258 | |---|-------|---|-----| | Well-Regulated Steps | 220 | MHC Molecules Are Codominantly Expressed | 259 | | Five Mechanisms Generate Antibody Diversity in Naïve B Cells | 225 | Class I and Class II Molecules Exhibit Diversity at
Both the Individual and Species Levels | 261 | | The Regulation of V(D)J Gene Recombination Involves Chromatin Alteration | 229 | MHC Polymorphism Is Primarily Limited to the Antigen-Binding Groove | 263 | | B-Cell Receptor Expression | 232 | The Role and Expression Pattern of MHC Molecules | 265 | | Each B Cell Synthesizes only one Heavy Chain and One Light Chain | 232 | MHC Molecules Present Both Intracellular and Extracellular Antigens | 267 | | Receptor Editing of Potentially Autoreactive Receptors Occurs in Light Chains | 233 | MHC Class I Expression Is Found Throughout the Body | 267 | | mRNA Splicing Regulates the Expression of Membrane
Bound versus Secreted Ig | 234 | Expression of MHC Class II Molecules Is Primarily Restricted to Antigen-Presenting Cells | 268 | | T-Cell Receptor Genes and Their Expression | 237 | MHC Expression Can Change with Changing Conditions | 268 | | Understanding the Protein Structure of the TCR Was Critical to the Process of Discovering the Genes | 237 | MHC Alleles Play a Critical Role in Immune Responsiveness | 271 | | • The β-Chain Gene Was Discovered Simultaneously in Two Different Laboratories | | Seminal Studies Demonstrate That T Cells Recognize
Peptide Presented in the Context of Self-MHC Alleles | 271 | | • A Search for the α-Chain Gene Led to the γ-Chain Gene Instead | 237 | Evidence Suggests Distinct Antigen Processing
and Presentation Pathways | 275 | | TCR Genes Are Arranged in V, D, and J Clusters of Gene
Segments | 238 | The Endogenous Pathway of Antigen Processing and Presentation | 276 | | Recombination of TCR Gene Segments Proceeds at a Different Rate and Occurs at Different Stages of | Refer | Peptides Are Generated by Protease Complexes Called Proteasomes | 276 | | Development in $\alpha\beta$ versus $\gamma\delta$ T Cells | 241 | Peptides Are Transported from the Cytosol to the
Rough Endoplasmic Reticulum | 277 | | The Process of TCR Gene Segment Rearrangement Is
Very Similar to Immunoglobulin Gene Recombination | 241 | Chaperones Aid Peptide Assembly with MHC Class I Molecules | 278 | | TCR Expression Is Controlled by Allelic Exclusion | 243 | The Exogenous Pathway of Antigen | 16 | | Conclusion | 244 | Processing and Presentation | 279 | | References Study Questions | 244 | Peptides Are Generated from Internalized Antigens in
Endocytic Vesicles | 279 | | Chapter 7: The Major Histocompatibili
Complex and Antigen Presentation | | The Invariant Chain Guides Transport of MHC Class II Molecules to Endocytic Vesicles | 280 | | The Structure and Function of MHC Class I | 249 | Peptides Assemble with MHC Class II Molecules by
Displacing CLIP | 281 | | Class I Molecules Consist of One Large Glycoprotein | 250 | Unconventional Antigen Processing and Presentation | 283 | | Heavy Chain Plus a Small Protein Light Chain Class II Molecules Consist of Two Nonidentical | 250 | Dendritic Cells Can Cross-Present Exogenous Antigen via MHC Class I Molecules | 283 | | Membrane-Bound Glycoprotein Chains | 252 | Cross-Presentation by APCs Is Essential for the | | | Class I and II Molecules Exhibit Polymorphism in
the Region That Binds to Peptides | 252 | Activation of Naïve CD8 ⁺ T Cells Presentation of Nonnentide Antigons | 283 | | The Organization and Inheritance of MHC | | Presentation of Nonpeptide Antigens | 285 | | Genes | 255 | Conclusion | 287 | | The MHC Locus Encodes the Three Major Classes of MHC Molecules | 256 | References | 287 | | MHC Molecules | 256 | Study Questions | 288 | | Chapter 8: T-Cell Development | 293 | Immature B Cells in the Bone Marrow Are Exquisitely | | |---|-----|--|------| | Early Thymocyte Development | 295 | Sensitive to Tolerance Induction through the
Elimination of Self-Reactive Cells | 33 | | Thymocytes Progress through Four Double-Negative Stages | 295 | Completion of B-Cell Development in the Spleen | 33 |
| • Thymocytes Express Either $\alpha\beta$ or $\gamma\delta$ T Cell Receptors | 297 | • T1 and T2 Transitional B Cells Form in the Spleen | | | • DN Thymocytes Undergo β-Selection, Which Results in Proliferation and Differentiation | 298 | and Undergo Selection for Survival and against Self-Reactivity | 33 | | Positive and Negative Selection | 299 | • T2 B Cells Give Rise to Mature Follicular B-2 B Cells | 34 | | Thymocytes "Learn" MHC Restriction in the Thymus | 300 | T3 B Cells Are Primarily Self-Reactive and Anergic | 34 | | T Cells Undergo Positive and Negative Selection | 302 | The Properties and Development of B-1 and | | | Positive Selection Ensures MHC Restriction | 303 | Marginal Zone B Cells | 342 | | Negative Selection (Central Tolerance) Ensures Self-Tolerance | 306 | B-1a, B-1b, and MZ B Cells Differ Phenotypically and
Functionally from B-2 B Cells | 34 | | The Selection Paradox: Why Don't We Delete All Cells
We Positively Select? | 308 | B-1a B Cells Are Derived from a Distinct Developmental Lineage | 34 | | An Alternative Model Can Explain the Thymic Selection Paradox | 310 | Comparison of B- and T-Cell Development | 34 | | Do Positive and Negative Selection Occur at the Same | 3.0 | Re Formation of an Immunological Synapse noisulano 3 8 | 348 | | Stage of Development, or in Sequence? | 310 | References Andread And | 349 | | Lineage Commitment | 311 | Study Questions | 350 | | Several Models Have Been Proposed to Explain Lineage Commitment | 311 | Chapter 10: T-Cell Activation, Helper
Subset Differentiation, and Memory | | | Transcription Factors Th-POK and Runx3 Regulate Lineage Commitment | 312 | T-Cell Activation and the Two-Signal Hypothesis | 354 | | Double-Positive Thymocytes May Commit to Other
Types of Lymphocytes | 313 | TCR Signaling Provides Signal 1 and Sets the Stage for
T-Cell Activation | 350 | | Exit from the Thymus and Final Maturation | 313 | Costimulatory Signals Are Required for Optimal T-Cell | | | Other Mechanisms That Maintain Self-Tolerance | 314 | Activation Whereas Coinhibitory Signals Prevent T-Cell Activation | 359 | | T _{REG} Cells Negatively Regulate Immune Responses | 314 | Clonal Anergy Results If a Costimulatory Signal Is Absent | 363 | | Peripheral Mechanisms of Tolerance Also Protect against | t | Cytokines Provide Signal 3 | 364 | | Autoreactive Thymocytes | 315 | Antigen-Presenting Cells Provide Costimulatory | 3542 | | Conclusion | 315 | Ligands and Cytokines to Naïve T Cells | 36 | | References | 316 | Superantigens Are a Special Class of T-Cell Activators | 366 | | Study Questions | 317 | Helper CD4 ⁺ T-Cell Differentiation | 367 | | | 321 | Helper T Cells Can Be Divided into Distinct Subsets and Coordinate Type 1 and Type 2 Responses | 368 | | B-Cell Development in the Bone Marrow | 323 | The Differentiation of Helper T-Cell Subsets Is Regulated | d | | Changes in Cell-Surface Markers, Gene Expression, and
Immunoglobulin Gene Rearrangements Define the | | by Polarizing Cytokines and a second | 369 | | Stages of B-Cell Development The Earliest Steps in Lymphocyte Differentiation Culminate | 323 | Each Effector Helper T-Cell Subset Has Unique Properties | 37 | | in the Generation of a Common Lymphoid Progenitor The Later Stages of B-Cell Development Result in | 325 | Helper T Cells May Not Be Irrevocably Committed to a Lineage | 381 | | Commitment to the B-Cell Phenotype and the Stepwise Rearrangement of Immunoglobulin Genes | 328 | Helper T-Cell Subsets Play Critical Roles in Immune Health and Disease | 381 | xvi | T-Cell Memory | 383 | Negative Regulation of B Cells | 426 | |--|----------------|--|-----| | Naïve, Effector, and Memory T Cells Can Be Distinguished
by Differences in Surface Protein Expression | 383 | Negative Signaling through CD22 Balances Positive
BCR-Mediated Signaling | 426 | | Memory Cell Subpopulations Are Distinguished by The
Locale and Effector Activity | eir
385 | Negative Signaling through the Receptor FcγRIIb
Inhibits B-Cell Activation | 427 | | Many Questions Remain Surrounding Memory T-Cell Origins and Functions | 385 | CD5 Acts as a Negative Regulator of B-Cell Signaling | 427 | | Conclusion | 386 | B-10 B Cells Act as Negative Regulators by Secreting IL-10 | 427 | | References | 387 | Conclusion | 428 | | Study Questions | 389 | References | 428 | | | ANT | Study Questions | 430 | | Chapter 11: B-Cell Activation, | | Observator 10. Different Deservator | 267 | | Differentiation, and Memory | 201 | Chapter 12: Effector Responses: | | | Generation | 391 | Antibody- and Cell-Mediated | 199 | | T-Dependent B-Cell Responses: Activation | 394 | Immunity | 433 | | Naïve B Cells Encounter Antigen in the Lymph | 205 | Antibody-Mediated Effector Functions | 434 | | Nodes and Spleen B-Cell Recognition of Cell-Bound Antigen Culminates in | 395
n | Antibodies Provide Protection against Pathogens, Toxins, and Harmful Cells in a Variety of Ways | 435 | | the Formation of an Immunological Synapse Antigen Binding to the BCR Leads to Activation of a | 398 | Different Antibody Classes Mediate Different Effector Functions | 438 | | Signal Transduction Cascade within the B Cell | 399 | Fc Receptors Mediate Many Effector Functions of Antibodicae | 275 | | B Cells Also Receive and Propagate Signals through
Coreceptors | 401 | Antibodies Protective Effector Functions Vary among Antibody | 442 | | B Cells Use More Than One Mechanism to Acquire Antigen from Antigen-Presenting Cells | 401 | Classes | 445 | | Antigen Receptor Binding Induces Internalization and
Antigen Presentation | 402 | Antibodies Have Many Therapeutic Uses in Treating Diseases | 445 | | The Early Phases of the T-Dependent Response Are | T | Cell-Mediated Effector Responses | 448 | | Characterized by Chemokine-Directed B-Cell Migration Specification of the Stimulated B-Cell Fate Depends on | | Cytotoxic T Lymphocytes Recognize and Kill Infected or
Tumor Cells via T-Cell Receptor Activation | 448 | | Transcription Factor Expression | 407 | Natural Killer Cell Activity Depends on the Balance of Activating and Inhibitory Signals | 450 | | T-Dependent B-Cell Responses: Differentiation | | Activating and Inhibitory Signals | 459 | | and Memory Generation | 408 | NKT Cells Bridge the Innate and Adaptive Immune Systems | 465 | | Some Activated B Cells Differentiate into Plasma Cells That Form the Primary Focus | 408 | Conclusion | 468 | | Other Activated B Cells Enter the Follicles and Initiate a | ATT TO SERVICE | References | 469 | | Germinal Center Response | 409 | Study Questions | 470 | | The Mechanisms of Somatic Hypermutation and Class Switch Recombination | 413 | Chapter 13: Barrier Immunity: The | | | Memory B Cells Recognizing T-Dependent Antigens Are Consulted Both within and outside the Commissional Contact | | Immunology of Mucosa and Skin | 473 | | Generated Both within and outside the Germinal Center | | Common Themes in Barrier Immune Systems | 475 | | Most Newly Generated B Cells Are Lost at the End of the
Primary Immune Response | 421 | All Barrier Surfaces Are Lined by One or More Layers of
Epithelial Cells | 476 | | T-Independent B-Cell Responses | 421 | Barrier Organs Are Populated by Innate and Adaptive | 5 | | T-Independent Antigens Stimulate Antibody Production in the Absence of T-Cell Help | 421 | Immune Cells That Interact with Epithelium and Secondary Lymphoid Tissue | 479 | | Two Novel Subclasses of B Cells Mediate the Response | | Barrier Immune Systems Initiate Both Tolerogenic and | The | | to T-Independent Antigens | 423 | Inflammatory Responses to Microorganisms | 480 | | Intestinal Immunity | 481 | Antigen Travels in Two Different Forms to Secondary Lymphoid Tissue via Afferent Lymphatics | 523 | |---|-----------------|--|-----------| | The Gut Is Organized into Different Anatomical | | | | | Sections and Tissue Layers | 483 | Antigen-Presenting Cells Presenting Processed Antigen Travel to the T-Cell Zones of Secondary Lymphoid Tissue | 525 | | Gut Epithelial Cells Vary in Phenotype and Function | 484 | Unprocessed Antigen Travels to the B-Cell Zones | 526 | | Setting the Stage: Maintaining Immune Homeostasis in the Intestine | 487 | Blood-Borne Antigen Is Captured by Specialized ADCs at the Marginal Zone of the Splace | F 2 7 | | The Gut Immune System Maintains a Barrier between | Lyn | APCs at the Marginal Zone of the Spleen | 527 | | the Microbiome and the Epithelium | 488 | First Contact between Antigen and | die | | Antigen Is Delivered from the Intestinal Lumen to | | Lymphocytes | 527 | | Antigen-Presenting Cells in Multiple Ways | 488 | Naïve CD4⁺ T Cells Arrest Their Movements after
Engaging Antigens | 527 | | • Immune Homeostasis in the Intestine Is Promoted by | 647 | B Cells Seek Help from CD4⁺ T Cells at the Border between | ia . | | Several Innate and Adaptive Cell Types | 489 | the Follicle
and Paracortex of the Lymph Node | 528 | | The Immune Systems in the Small and Large Intestines Differ | 102647 | Dynamic Imaging Adds New Perspectives on B- and | | | Intestines Differ | 494 | T-Cell Behavior in Germinal Centers | 529 | | Commensal Microbes Help Maintain Tolerogenic Tone
in the Intestine | 494 | CD8 ⁺ T Cells Are Activated in the Lymph Node via a | | | ceptibility to Autoimmune Diseaseoidaetril Isinatanfil | zu 3 551 | Multicellular Interaction | 529 | | System Persons to Investigat | 106 | A Summary of the Timing of a Primary Response | 531 | | System Response to Invasion | 496 | Differentiation into Central Memory T Cells Begins | | | The Gut Immune System Recognizes and Responds
to Harmful Pathogens | 496 | Early in the Primary Response | 532 | | The Intestinal Immune System Can Mount Both | neil | The Immune Response Contracts within 10 to 14 Days | 534 | | Type 1 and Type 2 Responses | 498 | The Effector and Memory Cell Response | 535 | | Dysbiosis, Inflammatory Bowel Disease, | | Activated Lymphocytes Exit the Lymph Node and | mleg | | and Celiac Disease | 500 | Recirculate through Different Tissues | 535 | | Other Barrier Immune Systems | 501 | Chemokine Receptors and Adhesion Molecules Degulate Haming of Mamory and Effector | | | | sriT. | Regulate Homing of Memory and Effector Lymphocytes to Peripheral Tissues | 536 | | The Respiratory Immune System Shares Many Features with the Intestinal Immune System | 502 | mplex-Mediated Heachons | E27 | | The Skin Is a Unique Barrier Immune System | 506 | The Immune Response: Case Studies | 537 | | | HA . | CD8 ⁺ T-Cell Response to Infection with <i>Toxoplasma gondii</i> | 538 | | Conclusion References | 508
508 | Resident Memory T-Cell Response to Herpes Simplex Virus Infection | 540 | | Study Questions | 510 | Host Immune Cell Response to a Tissue Graft | 540 | | nuncstrippressive Therapydainvertities delinionum | ımi • | In Vitto Studies Have Revealed the Structure and Life | | | Chapter 14: The Adaptive Immune | | Dendritic Cell Contribution to Listeria Infection | 542 | | Response in Space and Time | 511 | T-Cell Response to Tumors | 543 | | Immune Cells in Healthy Tissue: Homeostasis | 512 | Regulatory T Cells Inhibit the Immune Response
in Multiple Ways | 543 | | Naïve Lymphocytes Circulate between Secondary | refeG : | Conclusion | 544 | | and Tertiary Lymphoid Tissues | 512 | References | 544 | | Extravasation Is Driven by Sequential Activation of
Surface Molecules | 515 | Study Questions | 546 | | Naïve Lymphocytes Browse for Antigen along the | | | | | Reticular Network of Secondary Lymphoid Organs | 519 | Chapter 15: Allergy, Hypersensitivities and Chronic Inflammation | s,
549 | | Immune Cell Response to Antigen: The Innate | otaba | | 729 | | Immune Response | 522 | Allergies: Type I Hypersensitivity | 551 | | Innate Immune Cells Are Activated by Antigen | | IgE Antibodies Are Responsible for Type I Hypersensitivity | 551 | | Binding to Pattern Recognition Receptors | 522 | Many Allergens Can Elicit a Type I Response | 551 | | • IgE Antibodies Act by Binding Antigen, Resulting in the
Cross-Linking of Fcε Receptors | 554 | Chapter 16: Tolerance, Autoimmunity and Transplantation | ,
593 | |--|------------|--|----------| | IgE Receptor Signaling Is Tightly Regulated | 556 | Establishment and Maintenance of Tolerance | 594 | | Granulocytes Produce Molecules Responsible for Type I
Hypersensitivity Symptoms | 558 | Antigen Sequestration, or Evasion, Is One Means to
Protect Self Antigens from Attack | 595 | | Type I Hypersensitivities Are Characterized by Both Early and Late Responses | 559 | Central Tolerance Processes Occur in Primary Lymphoid Organs | 595 | | There Are Several Categories of Type I Hypersensitivity
Reactions | 561 | Cells That Mediate Peripheral Tolerance Are Generated Outside Primary Lymphoid Organs | 597 | | Susceptibility to Type I Hypersensitivity Reactions Is
Influenced by Both Environmental Factors and Genetics | 562 | Multiple Immune Cell Types Work in the Periphery to
Inhibit Anti-Self Responses | 598 | | Diagnostic Tests and Treatments Are Available for
Allergic Reactions | 568 | Autoimmunity Automobile Property | 602 | | Why Did Allergic Responses Evolve? | 570 | Some Autoimmune Diseases Target Specific Organs | 604 | | Antibody-Mediated (Type II) Hypersensitivity | 571 | Some Autoimmune Diseases Are Systemic | 608 | | Transfusion Reactions Are an Example of Type II Hypersensitivity | 572 | Both Intrinsic and Extrinsic Factors Can Favor Susceptibility to Autoimmune Disease | 611 | | Hemolytic Disease of the Newborn Is Caused by | A - | What Causes Autoimmunity? | 612 | | Type II Reactions | 573 | Treatments for Autoimmune Disease Range from Gene | ral | | Hemolytic Anemia Can Be Drug Induced | 575 | Immune Suppression to Targeted Immunotherapy | 614 | | Immune Complex-Mediated (Type III) | T | Transplantation Immunology | 617 | | Hypersensitivity | 575 | Demand for Transplants Is High, but Organ Supplies | VT. | | • Immune Complexes Can Damage Various Tissues | 575 | Remain Low | 617 | | Immune Complex-Mediated Hypersensitivity Can
Resolve Spontaneously | 576 | Antigenic Similarity between Donor and Recipient
Improves Transplant Success | 619 | | Auto-Antigens Can Be Involved in Immune
Complex-Mediated Reactions | 576 | Some Organs Are More Amenable to Transplantation Than Others | 621 | | Arthus Reactions Are Localized Type III Hypersensitivity Reactions | 577 | Matching Donor and Recipient Involves Prior Assessment of Histocompatibility | 622 | | Delayed-Type (Type IV) Hypersensitivity |
577 | Allograft Rejection Follows the Rules of Immune
Specificity and Memory | 624 | | The Initiation of a Type IV DTH Response Involves Sensitization by Antigen | 578 | Graft Rejection Takes a Predictable Clinical Course | 624 | | The Effector Phase of a Classical DTH Response Is
Induced by Second Exposure to a Sensitizing Antigen | 579 | Immunosuppressive Therapy Can Be Either General or
Target-Specific | 627 | | THE RELIGIOUS ASSESSMENT OF THE PROPERTY TH | -1 - | • Immune Tolerance to Allografts Is Favored in Certain | 456 | | The DTH Reaction Can Be Detected by a Skin Test Contact Dermatitis Is a Type IV Hypersensitivity Response | 580 | Instances | 630 | | | | Conclusion | 632 | | Chronic Inflammation | 582 | References Study Questions | 633 | | Infections Can Cause Chronic Inflammation | 582 | Commode Males and Alega Andrew Andrew Commode Andrew Andre | 634 | | There Are Noninfectious Causes of Chronic Inflammation | 582 | Chapter 17: Infectious Diseases | | | Obesity Is Associated with Chronic Inflammation | 583 | and Vaccines | 637 | | Chronic Inflammation Can Cause Systemic Disease | 584 | The Importance of Barriers and Vectors in | | | Conclusion | 587 | Infectious Disease | 639 | | References Study Questions | 588
589 | The Link between Location and Immune
Effector Mechanism | 641 | | Mucosal or Barrier Infections Are Typically Controlled
by T_H2-Type Responses | 642 | Conclusion | 676 | |---|--------|---|-------| | Extracellular Pathogens Must Be Recognized and | 042 | References | 676 | | Attacked Using Extracellular Tools | 642 | Study Questions | 677 | | Mechanisms That Recognize Infected Host Cells Are | 19H | Chapter 18: Immunodeficiency | | | Required to Combat Intracellular Infections | 644 | Diseases | 681 | | Viral Infections | 644 | Primary Immunodeficiencies | 682 | | The Antiviral Innate Response Provides Key Instructions for the Later Adaptive Response | 644 | Primary Immunodeficiency Diseases Are Often Detected Early in Life | 686 | | Many Viruses Are Neutralized by Antibodies | 646 | OF Antiqens of the Property of the Property of the Party | 000 | | Cell-Mediated Immunity is Important for Viral Control and Clearance | 647 | Combined Immunodeficiencies Disrupt Adaptive Immunity | 686 | | Viruses Employ Several Strategies to Evade Host Defense Mechanisms | 647 | B-Cell Immunodeficiencies Exhibit Depressed Production of One or More Antibody Isotypes | 691 | | The Imprinting of a Memory Response Can Influence Susceptibility to Future Viral Infection | 650 | Disruptions to Innate Immune Components May Also
Impact Adaptive Responses | 692 | | Bacterial Infections | 651 | Complement Deficiencies Are Relatively Common | 694 | | Immune Responses to Extracellular and Intracellular
Bacteria Differ | 651 | NK-Cell Deficiencies Increase Susceptibility to Viral
Infections and Cancer | 694 | | Bacteria Can Evade Host Defense Mechanisms at | | Immunodeficiency Disorders That Disrupt Immune Regulation Can Manifest as Autoimmunity | 695 | | Several Different Stages | 652 | Immunodeficiency Disorders Are Treated by Deplecement Thorsey | 696 | | Parasitic Infections | 654 | Replacement Therapy Animal Models of Immunodeficiency Have Been | 090 | | Protozoan Parasites Are a Diverse Set of Unicellular
Eukaryotes | 654 | Used to Study Basic Immune Function | 697 | | Parasitic Worms (Helminths) Typically Generate Weak | 104790 | Secondary Immunodeficiencies | 699 | | Immune Responses | 655 | Secondary Immunodeficiencies May Be Caused by a | TUT + | | Fungal Infections | 655 | Variety of Factors | 699 | | Innate Immunity Controls Most Fungal Infections | 657 | HIV/AIDS Has Claimed Millions of Lives Worldwide | 700 | | • Immunity against Fungal Pathogens Can Be Acquired | 659 | The Retrovirus HIV-1 Is the Causative Agent of AIDS | 702 | | Emerging and Re-emerging Infectious Diseases | 659 | HIV-1 is Spread by Intimate Contact with Infected Body Fluids | 704 | | Some Noteworthy New Infectious Diseases Have
Appeared Recently | 660 | In Vitro Studies Have Revealed the Structure and Life
Cycle of HIV | 705 | | Diseases May Re-emerge for Various Reasons | 661 | HIV Variants with Preference for CCR5 or CXCR4 | 700 | | Vaccines | 662 | Coreceptors Play Different Roles in Infection | 709 | | Basic Research and Rational Design Advance Vaccine Development | 663 | Infection with HIV Leads to Gradual Impairment of Immune Function | 710 | | Protective Immunity Can Be Achieved by Active or | | Changes over Time Lead to Progression to AIDS | 712 | | Passive Immunization There Are Several Vaccine Strategies, Each with Unique | 663 | Antiretroviral Therapy Inhibits HIV Replication, Disease
Progression, and Infection of Others | 713 | | Advantages and Challenges | 666 | A Vaccine May Be the Only Way to Stop the HIV/AIDS
Pandemic | 717 | | Adding a Conjugate or Multivalent Component Can
Improve Vaccine Immunogenicity | 674 | Conclusion | 722 | | Adjuvants Are Included to Enhance the Immune | | References | 723 | | Response to a Vaccine | 675 | Study Questions | 724 | | | | | | CONTENTS xix | Chapter 19: Cancer and the Immune System | 727 | Immunoprecipitation of Soluble Antigens Can Be Performed in Gel Matrices | 763 | |---|------------|---|-------| | Terminology and the Formation of Cancer | 728 | Immunoprecipitation Enables Isolation of Specific Molecules from Cell and Tissue Extracts | 764 | | Accumulated DNA Alterations or Translocation Can
Induce Cancer | 729 | Hemagglutination Reactions Can Be Used to Detect Any Antigen Conjugated to the Surface of | eM • | | Genes Associated with Cancer Control Cell Proliferation and Survival | 730 | Red Blood Cells Hemagglutination Inhibition Reactions Are Used to | 764 | | Malignant Transformation Involves Multiple Steps | 732 | Detect the Presence of Viruses and of Antiviral Antibodies | 765 | | Tumor Antigens | 735 | Bacterial Agglutination Can Be Used to Detect | | | Tumor-Specific Antigens Contain Unique Sequences | 735 | Antibodies to Bacteria | 765 | | Tumor-Associated Antigens Are Normal Cellular Proteins with Unique Expression Patterns | 736 | Antibody Assays Based on Molecules Bound to Solid-Phase Supports | 766 | | The Immune Response to Cancer | 737 | Radioimmunoassays Are Used to Measure the | | | Immunoediting Can Both Protect Against and Promote Tumor Growth | 738 | Concentrations of Biologically Relevant Proteins and
Hormones in Body Fluids | 766 | | Innate and Adaptive Pathways Participate in Cancer
Detection and Eradication | 741 | ELISAs Use Antibodies or Antigens Covalently Bound
to Enzymes | 767 | | Some Immune Response Elements Can Promote Cancer Survival | 743 | ELISPOT Assays Measure Molecules Secreted by Individual Cells | 770 | | Tumor Cells Evolve to Evade Immune Recognition and Apoptosis | | Western Blotting Is an Assay That Can Identify a Specific Protein in a Complex Protein Mixture | 771 | | Anticancer Immunotherapies | 745 | Methods to Determine the Affinity of Antigen-Antibody Interactions | 772 | | Monoclonal Antibodies Can Be Used to Direct
the Immune Response to Tumor Cells | 747 | Equilibrium Dialysis Can Be
Used to Measure Antibody Affinity for Antigen | 772 | | Tumor-Specific T Cells Can Be Expanded, or Even Created | 748 | Surface Plasmon Resonance Is Now Commonly | | | Therapeutic Vaccines May Enhance the Antitumor Immune Response | 752 | Used for Measurements of Antibody Affinity | 773 | | Manipulation of Comodulatory Signals, Using Checkpoint Blockade | 752 | Antibody-Mediated Microscopic Visualization of Cells and Subcellular Structures | 774 | | Conclusion References | 755
755 | Immunocytochemistry and Immunohistochemistry Use
Enzyme-Conjugated Antibodies to Create Images of
Fixed Tissues | 774 | | Study Questions | 756 | Immunoelectron Microscopy Uses Gold Beads to Visuali | · Sor | | | | Antibody-Bound Antigens | 775 | | Chapter 20: Experimental Systems and Methods | 759 | Immunofluorescence-Based Imaging Techniques | 775 | | Antibody Generation | 760 | Fluorescence Can Be Used to Visualize Cells and | . Bas | | Polyclonal Antibodies Are Secreted by Multiple Clones
of Antigen-Specific B Cells | 760 | Molecules | 778 | | A Monoclonal Antibody Is the Product of a Single
Stimulated B Cell | 761 | Confocal Fluorescence Microscopy Provides Three-Dimensional Images of Extraordinary Clarity | 779 | | Monoclonal Antibodies Can Be Modified for Use in the
Laboratory or the Clinic | 762 | Multiphoton Fluorescence Microscopy Is a Variation of
Confocal Microscopy | 779 | | Immunoprecipitation- and Agglutination-
Based Techniques | 762 | Intravital Imaging Allows Observation of Immune
Responses in Vivo | 780 | | Immunoprecipitation Can Be Performed in Solution | 763 | Visualization and Analysis of DNA Sequences in Intact
Chromatin | 780 | | The Flow Cytometer Measures Scattered and
Fluorescent Light from Cells Flowing Past a
Laser Beam | 782 | Chromatin Immunoprecipitation Experiments Characterize Protein-DNA Interactions | 793 | |--|-----|---|-------| | Sophisticated Software Allows the Investigator to
Identify Individual Cell Populations within a Sample | 783 | Chromosome Conformation Capture Technologies Analyze Long-Range Chromosomal DNA Interactions | 793 | | Flow Cytometers and Fluorescence-Activated Cell Sorters Have Important Clinical Applications | 706 | CRISPR-Cas9 | 794 | | cal that students should complete an immu | 786 | Whole-Animal Experimental Systems | 795 | | The Analysis of Multicolor Fluorescence Data Has Required the Development of Increasingly Sophisticated Software | 786 | Animal Research Is Subject to Federal Guidelines That Protect Nonhuman Research Species | 796 | | CyTOF Uses Antibodies to Harness the Power of Mass | | Inbred Strains Reduce Experimental Variation | 796 | | Spectrometry | 787 | Congenic Strains Are Used to Study the Effects of Particular Gene Loci on Immune Responses | 797 | | Magnets Can Be Used in a Gentle, Sterile Method for
Sorting Cells | 787 | Adoptive Transfer Experiments Allow in Vivo Examination of Isolated Cell Populations | 798 | | Cell Cycle Analysis | 788 | Transgenic Animals Carry Genes That Have Been | ,,,,, | | Tritiated Thymidine Uptake Was One of the First | | Artificially Introduced | 798 | | Methods Used to Assess Cell Division | 788 | Knock-in and Knockout Technologies Replace an | | | Colorimetric Assays for Cell Division Are Rapid
and Eliminate the Use of Radioactive Isotopes | 789 | Endogenous with a Nonfunctional or Engineered Gene Copy | 798 | | Bromodeoxyuridine-Based Assays for Cell Division Use
Antibodies to Detect Newly Synthesized DNA | 789 | The Cre/lox System Enables Inducible Gene Deletion
in Selected Tissues | 801 | | Propidium Iodide Enables Analysis of the Cell Cycle | | References | 803 | | Status of Cell Populations | 790 | Study Questions | 804 | | Carboxyfluorescein Succinimidyl Ester Can Be Used to
Follow Cell Division | 790 | Appendix I: CD Antigens | A-1 | | Assays of Cell Death | 791 | a conditioning author to the sensels, viloter in forest a sense. | | | | | Appendix II: Cytokines and
Associated JAK-STAT Signaling | | | The ⁵¹Cr Release Assay Was the First Assay Used
to Measure Cell Death | 791 | Molecules Mossociated of Anti-Stati Signating | B-1 | | Fluorescently Labeled Annexin A5 Measures | | Appendix III: Chemokines and | | | Phosphatidylserine in the Outer Lipid Envelope of Apoptotic Cells | 792 | Chemokine Receptors | C-1 | | The TUNEL Assay Measures Apoptotically Generated
DNA Fragmentation | 792 | Glossary | G-1 | | Caspase Assays Measure the Activity of Enzymes | | Answers to Study Questions | AN-1 | | Involved in Apoptosis | 793 | Index | 1-1 | Index 1-1