Contents

The birth angegrawith
 Growth of fault population
 Faults, communication
 Summary

How to use this book	s viii
Preface	xi D
Acknowledgments	xii
List of symbols	xiii
the second se	

1

Structural geology and structural analysis

	-	
1.1	Approaching structural geology	2
1.2	Structural geology and tectonics	2
1.3	Structural data sets	4
1.4	Field data	5
1.5	Remote sensing and geodesy	8
1.6	DEM, GIS and Google Earth	10
1.7	Seismic data	10
1.8	Experimental data	14
1.9	Numerical modeling	15
1.10	Other data sources	15
1.11	Organizing the data	16
1.12	Structural analysis	18
1.13	Concluding remarks	22

2

Deformation

2.1	What is deformation?	26
2.2	Components of deformation	27
2.3	System of reference	28
2.4	Deformation: detached from history	29
2.5	Homogeneous and heterogeneous	
	deformation	29
2.6	Mathematical description of deformation	30
2.7	One-dimensional strain	30
2.8	Strain in two dimensions	32
2.9	Three-dimensional strain	33
2.10	The strain ellipsoid	34
2.11	More about the strain ellipsoid	35
2.12	Volume change	36
2.13	Uniaxial strain (compaction)	37
2.14	Pure shear and coaxial deformations	38
2.15	Simple shear	38
2.16	Subsimple shear	39
2.17	Progressive deformation and flow	
	parameters	39
2.18	Velocity field	41

2.19	Flow apophyses	42
2.20	Vorticity and W _k	43
2.21	Steady-state deformation	45
2.22	Incremental deformation	45
2.23	Strain compatibility and boundary conditions	45
2.24	Deformation history from	
	deformed rocks	46
2.25	Coaxiality and progressive simple shear	47
2.26	Progressive pure shear	49
2.27	Progressive subsimple shear	50
2.28	Simple and pure shear and their scale	
	dependence	51
2.29	General three-dimensional deformation	51
2.30	Stress versus strain	52
	Summary	55

3

Strain in rocks 3.1 Why perform strain analysis?

59

60

3.2	Strain in one dimension	60
3.3	Strain in two dimensions	60
3.4	Strain in three dimensions	67
	Summary	70

4

25

Stress 73 4.1 Definitions, magnitudes and units 74 4.2 Stress on a surface 74 4.3 Stress at a point 75 4.4 Stress components 77 4.5 The stress tensor (matrix) 77 4.6 Deviatoric stress and mean stress 78 4.7 Mohr circle and diagram 79 Summary 80

5

Stress in the lithosphere		83
5.1	Importance of stress measurements	84
5.2	Stress measurements	84
5.3	Reference states of stress	87
5.4	The thermal effect on horizontal stress	91
5.5	Residual stress	92
5.6	Tectonic stress	92

		-	
3.73			
VI			

Contents

- 5.7
- Global stress patterns Differential stress, deviatoric stress and 5.8 some implications Summary

Rheology

6.1	Rheology and continuum mechanics	102
6.2	Idealized conditions	102
6.3	Elastic materials	103
6.4	Plasticity and flow: permanent deformation	107
6.5	Combined models	111
6.6	Experiments	113
6.7	The role of temperature, water, etc.	114
6.8	Definition of plastic, ductile and brittle	
	deformation	116
6.9	Rheology of the lithosphere	117
	Summary	119

Fracture and brittle deformation

Frac	ture and brittle deformation	123
7.1	Brittle deformation mechanisms	124
7.2	Types of fractures	125
7.3	Failure and fracture criteria	129
7.4	Microdefects and failure	134
7.5	Fracture termination and interaction	138
7.6	Reactivation and frictional sliding	140
7.7	Fluid pressure, effective stress and	
	poroelasticity	141
7.8	Deformation bands and fractures in	
	porous rocks	143
	Summary	149

Joints and veins

8.1	Definition and characteristics	154
8.2	Kinematics and stress	156
8.3	How, why and where joints form	157
8.4	Joint distributions	161
8.5	Growth and morphology of joints	164
8.6	Joint interaction and relative age	166
8.7	Joints, permeability and fluid flow	167
8.8	Veins	168
	Summary	174
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	 8.1 Definition and characteristics 8.2 Kinematics and stress 8.3 How, why and where joints form 8.4 Joint distributions 8.5 Growth and morphology of joints 8.6 Joint interaction and relative age 8.7 Joints, permeability and fluid flow 8.8 Veins Summary

Fau	Importance of stress measurements zi	177
9.1	Fault terminology	178
9.2	Fault anatomy	183
9.3	Displacement distribution	187
9.4	Identifying faults in an oil field setting	188

9.5	The birth and growth of faults	193
9.6	Growth of fault populations	204
9.7	Faults, communication and sealing properties	210
	Summary	216

1	•			
-	Kiner	natics and paleostress in the		
	brittle	e regime	221	
	10.1	Kinematic criteria	222	
	10.2	Stress from faults	224	
	10.3	A kinematic approach to fault slip data	227	
	10.4	Contractional and extensional structures	230	
		Summary	231	
	1			
	Defo	- rmation at the microscale	235	
	11.1	Deformation mechanisms and		
		microstructures	236	
	11.2	Brittle versus plastic deformation		
		mechanisms	236	
	11.3	Brittle deformation mechanisms	237	
	11.4	Mechanical twinning	237	
	11.5	Crystal defects	239	
	11.6	From the atomic scale to		
		microstructures	245	
		Summary gallaborn lastromute	254	
Ì	2			
1	Folds	and folding	257	
	12.1	Geometric description	258	
	12.2	Folding: mechanisms and processes	265	
	12.3	Fold interference patterns and refolded folds	274	
	12.4	Folds in shear zones	276	
	12.5	Folding at shallow crustal depths	277	
		Summary	278	
1	2			
	5	Deformation: detached from history		
	Folia	tion and cleavage	283	
	13.1	Basic concepts	284	
	13.2	Relative age terminology	286	
	13.3	Cleavage development	286	
	13.4	Cleavage, folds and strain	291	
	13.5	Foliations in quartzites, gneisses and		
		mylonite zones	295	
		Summary	297	

Lineations

14.1	Basic terminology	302
14.2	Lineations related to plastic deformation	302

417

14.3	Lineations in the brittle regime	
14.4	Lineations and kinematics	
	Summary	

15

Boudinage

15.1	Boudinage and pinch-and-swell	
	structures	310
15.2	Geometry, viscosity and strain	310
15.3	Asymmetric boudinage and rotation	319
15.4	Foliation boudinage	320
15.5	Boudinage and the strain ellipse	322
15.6	Large-scale boudinage	323
	Summary	32

16

Shear zones and mylonites		329
16.1	What is a shear zone?	330
16.2	The ideal plastic shear zone	333
16.3	Adding pure shear to a simple	
	shear zone	337
16.4	Non-plane strain shear zones	340
16.5	Mylonites and kinematic indicators	341
16.6	Growth of shear zones	349
	Summary	351

17

Contractional regimes		355
17.1	Contractional faults	356
17.2	Thrust faults	357
17.3	Ramps, thrusts and folds	362
17.4	Orogenic wedges	368

18

Extensional regimes

Summary

18.1	Extensional faults	378
18.2	Fault systems	379
18.3	Low-angle faults and core complexes	381
18.4	Ramp-flat-ramp geometries	386
18.5	Footwall versus hanging-wall collapse	387
18.6	Rifting	388
18.7	Half-grabens and accommodation	
	zones	389
18.8	Pure and simple shear models	389
18.9	Stretching estimates, fractals and	
	power-law relations	390
18.10	Passive margins and oceanic rifts	392
18.11	Orogenic extension and orogenic	
	collapse	393
18.12	Postorogenic extension	395
	Summary	396

19

306

308 311

315

Strike-slip, transpression and transtension 40119.1Strike-slip faults40219.2Transfer faults40219.3Transcurrent faults40419.4Development and anatomy of strike-slip
faults40519.5Transpression and transtension410

19.5Hanspiession and transfersion41019.6Strain partitioning413Summary414

20

Salt tectonics

20.1	Salt tectonics and halokinesis	418
20.2	Salt properties and rheology	418
20.3	Salt diapirism, salt geometry and the	
	flow of salt	420
20.4	Rising diapirs: processes	429
20.5	Salt diapirism in the extensional regime	430
20.6	Diapirism in the contractional regime	432
20.7	Diapirism in strike-slip settings	435
20.8	Salt collapse by karstification	435
20.9	Salt décollements	436
	Summary	438

21

Balancing and restoration 441 21.1 Basic concepts and definitions 442 442 21.2 Restoration of geologic sections Restoration in map view 447 21.3 Geomechanically based restoration 450 21.4 21.5 Restoration in three dimensions 451 21.6 Backstripping 451 Summary 452

22

373

377

A glimpse of a larger picture 455

22.1	Synthesizing	450
22.2	Deformation phases	456
22.3	Progressive deformation	457
22.4	Metamorphic textures	457
22.5	Radiometric dating and <i>P</i> – <i>T</i> – <i>t</i> paths	460
22.6	Tectonics and sedimentation	461
	Summary	462

Appendix A: More about the deformation matrix	464
Appendix B: Spherical projections	468
Glossary	474
References	495
Cover and chapter image captions	501
Index	503