
NALYTICAL MECHANICS provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and prepares the reader thoroughly for further study at the graduate level.

The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early on in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many "e-mail questions," which are intended to facilitate dialogue between the student and instructor.

Many worked examples are given, and there are 250 homework exercises to help students gain confidence and proficiency in problem solving. It is an ideal textbook for undergraduate courses in classical mechanics and provides a sound foundation for graduate study.

LOUIS N. HAND was educated at Swarthmore College and Stanford University. After serving as an assistant professor at Harvard University, he came to the Physics Department of Cornell University where he has remained ever since. He is presently

JANET D. FINCH, a lecturer in the Physics Department at SUNY-Cortland, earned her BS in engineering physics from the University of Illinois, and her MS in theoretical physics and her MA in teaching from Cornell.

2

The figure at left is from the title page of the 1605 book by Stevinus on mechanics, written long before Newton. The endless chain cannot exhibit perpetual motion. From this symmetry principle, Stevinus deduced the parallelogram of forces, a crucial discovery in mechanics. "Wonder en is gheen

wonder" is 17th century Dutch and means "every enlightening progress made in science is accompanied with a certain feeling of disillusionment" (translation by Ernst Mach).

Preface

1

2

LAGR	ANGIAN MECHANICS	1
1.1	Example and Review of Newton's Mechanics: A Block Sliding on an Inclined Plane	1
1.2	Using Virtual Work to Solve the Same Problem	3
1.3	Solving for the Motion of a Heavy Bead Sliding on a Rotating Wire	7
1.4	Toward a General Formula: Degrees of Freedom and Types	
	of Constraints	10
1.5	Generalized Velocities: How to "Cancel the Dots"	14
1.6	Virtual Displacements and Virtual Work - Generalized Forces	14
1.7	Kinetic Energy as a Function of the Generalized Coordinates	
	and Velocities	16
1.8	Conservative Forces: Definition of the Lagrangian L	18
1.9	Reference Frames	20
1.10	Definition of the Hamiltonian	21
1.11	How to Get Rid of Ignorable Coordinates	22
1.12	Discussion and Conclusions - What's Next after You Get the EOM?	23
1.13	An Example of a Solved Problem	24
	Summary of Chapter 1	25
	Problems	26
	Appendix A. About Nonholonomic Constraints	36
	Appendix B. More about Conservative Forces	41
VARIA	TIONAL CALCULUS AND ITS APPLICATION TO MECHANICS	44
2.1	History	44
2.2	The Euler Equation	46
2.3	Relevance to Mechanics	51
2.4	Systems with Several Degrees of Freedom	53
2.5	Why Use the Variational Approach in Mechanics?	54
2.6	Lagrange Multipliers	56

xi

CONTENTS

	2.7	Solving Problems with Explicit Holonomic Constraints	57
	2.8	Nonintegrable Nonholonomic Constraints - A Method that Works	62
	2.9	Postscript on the Euler Equation with More Than	
		One Independent Variable	65
		Summary of Chapter 2	65
		Problems	66
		Appendix. About Maupertuis and What Came to Be Called	
		"Maupertuis' Principle"	75
3	LINEA	R OSCILLATORS	81
	3.1	Stable or Unstable Equilibrium?	82
	3.2	Simple Harmonic Oscillator	87
	3.3	Damped Simple Harmonic Oscillator (DSHO)	.90
	3.4	An Oscillator Driven by an External Force	94
	3.5	Driving Force Is a Step Function	96
	3.6	Finding the Green's Function for the SHO	99
	3.7	Adding up the Delta Functions - Solving the Arbitary Force	103
	3.8	Driving an Oscillator in Resonance	105
	3.9	Relative Phase of the DSHO Oscillator with Sinusoidal Drive	110
		Summary of Chapter 3	113
		Problems	114
4	ONE-	DIMENSIONAL SYSTEMS: CENTRAL FORCES AND	
N		CEPLER PROBLEM	123
	4.1	The Motion of a "Generic" One-Dimensional System	123
	4.2	The Grandfather's Clock	125
	4.3	The History of the Kepler Problem	130
	4.4	Solving the Central Force Problem	133
	4.5	The Special Case of Gravitational Attraction	141
	4.6	Interpretation of Orbits	143
	4.7	Repulsive $\frac{1}{r^2}$ Forces	151
		Summary of Chapter 4	156
		Problems	156
		Appendix. Tables of Astrophysical Data	167
5	NOET	THER'S THEOREM AND HAMILTONIAN DYNAMICS	170
	5.1	Discovering Angular Momentum Conservation from	
		Rotational Invariance	170
	5.2	Noether's Theorem	172
	5.3	Hamiltonian Dynamics	175
	5.4	The Legendre Transformation	175
	5.5	Hamilton's Equations of Motion	180
	5.6	Liouville's Theorem	184
	5.7	Momentum Space	189

-	-		-	-		-		
	n	N	П		B . I	T	•	
-	U	1 1					3	
-	-			-			*	

	5.8	Hamiltonian Dynamics in Accelerated Systems		19
		Summary of Chapter 5 / According 5 and to polyceoptic		19
		Problems signation of a data M		19
		Appendix A. A General Proof of Liouville's Theorem		
		Using the Jacobian		20
		Appendix B. Poincaré Recurrence Theorem		20
6	THEO	RETICAL MECHANICS: FROM CANONICAL		
	TRAN	SFORMATIONS TO ACTION-ANGLE VARIABLES		20
	6.1	Canonical Transformations		20
	6.2	Discovering Three New Forms of the Generating Function		21
	6.3	Poisson Brackets		21
	6.4	Hamilton–Jacobi Equation		21
	6.5	Action-Angle Variables for 1-D Systems		23
	6.6	Integrable Systems		23
	6.7	Invariant Tori and Winding Numbers		23
		Summary of Chapter 6		23
		Problems		24
		Appendix. What Does "Symplectic" Mean?		24
7	ROTA	TING COORDINATE SYSTEMS		25
	7.1	What Is a Vector?		25
	7.2	Review: Infinitesimal Rotations and Angular Velocity		25
	7.3	Finite Three-Dimensional Rotations		25
	7.4	Rotated Reference Frames		25
	7.5	Rotating Reference Frames		26
	7.6	The Instantaneous Angular Velocity $\vec{\omega}$		26
	7.7	Fictitious Forces		26
	7.8	The Tower of Pisa Problem		26
	7.9	Why Do Hurricane Winds Rotate?		27
	7.10	Foucault Pendulum		27
		Summary of Chapter 7		27
		Problems mobasing to assuged own there instand		27
8	THE	OYNAMICS OF RIGID BODIES		28
-	8.1	Winstie Deserve of a Disid Date		28
	8.2	The Mamont of Inantia Tangan		28
	8.3	Angular Momentum of a Rigid Body		29
	8.4	The Euler Equations for Force-Free Rigid Body Motion		29
	8.5	Motion of a Torque-Free Symmetric Top		29
	8.6	Force-Free Precession of the Earth: The "Chandler Wobble"		29
	8.7	DOW ODIAL		30
	8.8	Finding the Angular Velocity		30
	8.9	Motion of Torque-Free Asymmetric Tops: Poinsot Construct	ion	30

8.10	The Heavy Symmetric Top
8.11	Precession of the Equinoxes
8.12	Mach's Principle
	Summary of Chapter 8
	Problems meldoor add good add good and good a
	Appendix A. What Is a Tensor?
	Appendix B. Symmetric Matrices Can Always Be Diagonalized
	by "Rotating the Coordinates"
	Appendix C. Understanding the Earth's Equatorial Bulge
THE T	HEORY OF SMALL VIBRATIONS
9.1	Two Coupled Pendulums
9.2	Exact Lagrangian for the Double Pendulum
9.3	Single Frequency Solutions to Equations of Motion
9.4	Superimposing Different Modes; Complex Mode Amplitudes
9.5	Linear Triatomic Molecule
9.6	Why the Method Always Works
9.7	N Point Masses Connected by a String
	Summary of Chapter 9
	Problems
	Appendix. What Is a Cofactor?
APPR	OXIMATE SOLUTIONS TO NONANALYTIC PROBLEMS
10.1	Stability of Mechanical Systems
10.2	Parametric Resonance
10.3	Lindstedt–Poincaré Perturbation Theory
10.4	Driven Anharmonic Oscillator
	Summary of Chapter 10
	Problems
CHAC	DTIC DYNAMICS
11.1	Conservative Chaos - The Double Pendulum: A Hamiltonian
	System with Two Degrees of Freedom
11.2	The Poincaré Section
11.3	KAM Tori: The Importance of Winding Number
11.4	Irrational Winding Numbers
11.5	Poincaré–Birkhoff Theorem
11.6	Linearizing Near a Fixed Point: The Tangent Map and
	the Stability Matrix
11.7	Following Unstable Manifolds: Homoclinic Tangles
11.7 11.8	renorming emistable maintenas. Homoennie rangies
	Lyapunov Exponents
11.8 11.9	Lyapunov Exponents

CONTENTS

	11.12	Fractals /7	463
		Chaos in the Solar System	468
		Student Projects	474
		Appendix. The Logistic Map: Period-Doubling Route	
		to Chaos; Renormalization	481
12	SPECI	AL RELATIVITY	493
	12.1	Space-Time Diagrams	495
	12.2	The Lorentz Transformation	498
	12.3	Simultaneity Is Relative	501
	12.4	What Happens to y and z if We Move Parallel to the X Axis?	503
	12.5	Velocity Transformation Rules	504
	12.6	Observing Light Waves	505
	12.7	What Is Mass?	512
	12.8	Rest Mass Is a Form of Energy	513
	12.9	How Does Momentum Transform?	517
	12.10	More Theoretical "Evidence" for the Equivalence of Mass	
		and Energy	519
	12.11	Mathematics of Relativity: Invariants and Four-Vectors	521
	12.12	A Second Look at the Energy-Momentum Four-Vector	526
	12.13	Why Are There Both Upper and Lower Greek Indices?	529
	12.14	Relativistic Lagrangian Mechanics	530
	12.15	What Is the Lagrangian in an Electromagnetic Field?	533
	12.16	Does a Constant Force Cause Constant Acceleration?	535
	12.17	Derivation of the Lorentz Force from the Lagrangian	537
	12.18	Relativistic Circular Motion	539
		Summary of Chapter 12	540
		Problems	541
		Appendix. The Twin Paradox	554
Biblio	graphy		559
Refere	ences		563
Index			565