Contents

Plate section falls between pages 128 and 129

Li	st of a	bbreviations	xxix
1	Oxyg	gen is a toxic gas—an introduction to oxygen	
		ity and reactive oxygen species	1
	1.1	The history of oxygen: a major air pollutant	1
	1.2	Oxygen today	4
		1.2.1 Oxygen in water and organic solvents	4
	1.3	Oxygen and anaerobes	4
		1.3.1 Why does oxygen injure anaerobes?	6
	1.4	Oxygen and aerobes	7
		1.4.1 Oxygen transport in mammals	7
		1.4.2 Oxygen sensing	8
		1.4.3 Mitochondrial electron transport	8
		1.4.4 Bacterial electron transport chains	9
	1.5	Oxidases and oxygenases in aerobes	13
		1.5.1 Cytochromes P450	14
	1.6	Oxygen toxicity in aerobes	17
		1.6.1 Oxygen toxicity in bacteria and plants	17
		1.6.2 Oxygen toxicity in humans and other animals	18
		1.6.3 Retinopathy of prematurity	20
		1.6.4 Factors affecting oxygen toxicity	21
	1.7	What causes the toxic effects of oxygen?	22
	1.8	What is a free radical?	22
	1.9	Oxygen and its derivatives	24
		1.9.1 Singlet oxygen	25
		1.9.2 Superoxide radical	26
		1.9.3 Ozone	26
	1.10	Questions of terminology: oxygen-derived species,	
		reactive oxygen species and oxidants	27
	1.11	Sources of superoxide in aerobes	27
		1.11.1 Enzymes	28
		1.11.2 Auto-oxidation reactions	28
		1.11.3 Haem proteins	30
		1.11.4 Mitochondrial electron transport	31
		1.11.5 Bacterial superoxide production	32
		1.11.6 Endoplasmic reticulum	32
		1.11.7 The nucleus	33
		1.11.8 Quantification	33

V11	Contents
X11	Contents

xi	i	Contents	
	Ref No	Terences tes	34 35
2	The	e chemistry of free radicals and related 'reactive species'	36
	2.1		36
	2.2		36
	2.3		39
		2.3.1 Oxidation and reduction	39
		2.3.2 Reaction rates and rate constants	43
	2.4	2.3.3 Measurement of reaction rates for radical reactions	45
	2.4	Chemistry of biologically important radicals 2.4.1 Transition metals	48
		2.4.2 Hydroxyl radical	48 55
		2.4.3 Superoxide radical	60
		2.4.4 Peroxyl and alkoxyl radicals	67
		2.4.5 Sulphur radicals	70
		2.4.6 Nitric oxide	73
	2.5		82
		2.5.1 Hydrogen peroxide	82
		2.5.2 Hypochlorous acid	84
		2.5.3 Singlet oxygen	86
		2.5.4 Peroxynitrite	95
		erences	100
	Not	es	104
3	Ant	ioxidant defences	105
	3.1		105
		3.1.1 What is an antioxidant? A problem of definition	106
	3.2	Antioxidant defence enzymes: superoxide dismutases	107
		3.2.1 Copper–zinc SOD	107
		3.2.2 Manganese SODs	112
		3.2.3 Iron and cambialistic SODs	115
		3.2.4 Assays of SOD	117
	3.3	Using SOD enzymes as probes for superoxide	121
	2 4	3.3.1 Are there more SODs to come?	122
	3.4	1 , 8 1	
		dismutases	123
		3.4.1 Gene knockouts in bacteria and yeasts	123
		3.4.2 Transgenic animals	124
		3.4.3 Induction experiments	125
	3.5	3.4.4 SOD and oxygen toxicity in animals The superoxide theory of oxygen toxicity: a critique	126 127
	5.5	3.5.1 Anaerobes with SOD	127
		3.5.2 Aerobes lacking SOD	127
		3.5.3 Can manganese replace SOD?	129
			1-/

	Contents	xiii
3.6	Why is superoxide cytotoxic?	129
	3.6.1 Direct damage by superoxide	129
	3.6.2 Cytotoxicity of superoxide-derived species	130
3.7	Antioxidant defence enzymes: catalases	134
	3.7.1 Catalase structure	136
	3.7.2 Catalase reaction mechanism	136
	3.7.3 Catalase inhibitors	138
	3.7.4 Peroxidatic activity of catalase	138
	3.7.5 Subcellular location of catalase	139
	3.7.6 Manganese-containing catalases	139
	3.7.7 Acatalasaemia	140
3.8	Antioxidant defence enzymes: the glutathione	
	peroxidase family	140
	3.8.1 Structure of glutathione peroxidases and reductase	143
	3.8.2 A family of enzymes	144
	3.8.3 Cooperation of glutathione peroxidase and catalase	
	in the removal of hydrogen peroxide in vivo	145
	3.8.4 Assessing the operation of the glutathione	
	peroxidase system	146
3.9	Glutathione in metabolism	146
0.7	3.9.1 Scavenging of reactive species by GSH	148
	3.9.2 Glutathione biosynthesis and degradation	148
3.10	The glutathione S-transferase superfamily	150
3.11	Mixed disulphides	152
3.12		153
3.13	Thioredoxin	154
0.10	3.13.1 Thioredoxin and antioxidant defence	155
	3.13.2 Thiol-specific antioxidants	155
3.14		
0111	glutathione-metabolizing enzymes in vivo	156
	3.14.1 Use of inhibitors	156
	3.14.2 Defects in GSH metabolism	157
	3.14.3 Selenium deficiency in animals	158
	3.14.4 Human selenium deficiency	159
	3.14.5 Conclusion	161
3.15		
3.13	in antioxidant defence	161
	3.15.1 Trypanothione	162
	3.15.2 Ergothioneine	163
3.16		163
3.10	3.16.1 Cytochrome ϵ peroxidase: another specific	100
	peroxidase	164
	3.16.2 NADH peroxidase and oxidase	164
	3.16.3 'Non-specific' peroxidases	165
	3.16.4 Horseradish peroxidase	166
	3.16.5 Peroxidases as oxidases	166
	J. IV. J I CIVAIUANCE AS UNIUANCE	100

•	
X1V	Contents
AIV	Contients

		3.16.6 Why do plants have so much peroxidase?	168
		3.16.7 Chloroperoxidase and bromoperoxidase	169
		3.16.8 Ascorbate peroxidase	169
		3.16.9 Peroxidase 'mimics'	170
	3.17	Antioxidant defence enzymes: co-operation	170
		3.17.1 The need for co-operation	170
		3.17.2 Down's syndrome	171
	3.18		172
		3.18.1 Iron metabolism	172
		3.18.2 Copper metabolism	176
		3.18.3 Haem proteins: potential pro-oxidants	177
		3.18.4 Evidence that metal ion sequestration is important	178
	3.19	Metal ion sequestration in different environments	184
		3.19.1 Intracellular requirements	184
		3.19.2 Metallothioneins	184
		3.19.3 Phytochelatins	186
		3.19.4 The extracellular environment	186
	3.20	Haem oxygenase	189
	3.21		
		compounds synthesized in vivo	191
		3.21.1 Bilirubin	191
		3.21.2 α-Keto acids	192
		3.21.3 Sex hormones	192
		3.21.4 Melatonin	192
		3.21.5 Lipoic acid	194
		3.21.6 Coenzyme Q	194
		3.21.7 Uric acid	195
		3.21.8 Histidine-containing dipeptides	198
		3.21.9 Melanins	198
(3.22	Antioxidant protection by low-molecular-mass agents:	
		compounds derived from the diet	200
		3.22.1 Ascorbic acid (vitamin C)	200
		3.22.2 Ascorbate as an antioxidant in vitro	202
		3.22.3 Is ascorbate an antioxidant in vivo?	203
		3.22.4 'Recycling' of ascorbate	205
		3.22.5 Pro-oxidant effects of ascorbate	206
		3.22.6 Ascorbate and iron overload disease	208
		3.22.7 Vitamin E	208
		3.22.8 Chemistry of vitamin E	209
		3.22.9 Recycling of α-tocopheryl radicals	215
		3.22.10 Pro-oxidant effects of α-tocopherol	216
		3.22.11 Processing of dietary vitamin E	216
		3.22.12 Evidence for an antioxidant effect of	
		α-tocopherol in vivo	217
3	3.23	Carotenoids: important biological antioxidants?	220
		3.23.1 Carotenoid chemistry	220

		C	Contents	XV
		3.23.2 Metabolic roles of carotenoids		222
		3.23.3 Carotenoids as antioxidants		223
	3 24	Plant phenols		225
	3.24	3.24.1 Phenols in the diet		225
		3.24.2 Are plant phenols antioxidants <i>in vivo</i> ?		229
		3.24.3 Herbal medicines		230
	Defer	rences		231
	Notes			245
	TVOCC	5		213
4		ative stress: adaptation, damage, repair and death		246
	4.1	Introduction		246
	4.2	Consequences of oxidative stress: adaptation, damage		
		or stimulation?		246
		4.2.1 Adaptation		247
		4.2.2 Cell injury		249
		4.2.3 Changes in cell behaviour		250
	4.3	Consequences of oxidative stress: cell death		251
	4.4	Oxidative stress and calcium		253
		4.4.1 Cell calcium metabolism		253
		4.4.2 Dysregulation by oxidative stress		254
		4.4.3 The mitochondrial permeability transition		256
	4.5	Oxidative stress and transition metals		257
		4.5.1 Iron		257
		4.5.2 Evidence for dysregulation of iron		257
		4.5.3 Copper		262
	4.6	Mechanisms of damage to cellular targets by oxidative		262
		stress: DNA		262
		4.6.1 DNA and chromatin structure		264
		4.6.2 DNA cleavage and replication		266
		4.6.3 Telomeres		267
		4.6.4 Damage to DNA by ROS and RNS		267 273
		4.6.5 Damage to mitochondrial and chloroplast DNA	~~?	273
		4.6.6 Why does hydrogen peroxide lead to DNA damag	ge:	2/4
		4.6.7 Use of iron and hydrogen peroxide for DNA		276
		'footprinting'		270
		4.6.8 Histidine as an extracellular pro-oxidant for		276
	17	DNA damage		270
	4.7	Consequences of damage to DNA by ROS/RNS: mutation		277
		4.7.1 Mutagenicity of oxidative base damage		278
	10			270
	4.8	Consequences of damage to DNA by ROS/RNS:		278
		DNA repair 4.8.1 Sanitization of the nucleotide pool		280
		4.8.2 Repair of pyrimidine dimers		280
		4.8.3 Excision repair		281
		4.8.4 Repair of 8-hydroxyguanine		282
		T.O. T ICPAIL OF O-HYDIOXY GUAINING		202

	4.8.5 Repair of double-strand breaks and mitochondrial	
	repair	282
	4.8.6 Evidence that DNA repair is important	282
4.9	Mechanisms of damage to cellular targets by oxidative	
	stress: lipid peroxidation	284
	4.9.1 A history of peroxidation: from oils to textiles	284
	4.9.2 Targets of attack: membrane lipids	285
	4.9.3 Membrane structure	287
	4.9.4 Targets of attack: fatty acids and lipoproteins	289
	4.9.5 How does lipid peroxidation begin?	291
	4.9.6 Propagation of lipid peroxidation	293
	4.9.7 Iron and lipid peroxidation	296
	4.9.8 Which iron chelates stimulate lipid peroxidation?	298
	4.9.9 Copper and other metals as promoters of lipid	
	peroxidation	299
	4.9.10 Products of peroxide decomposition	300
	4.9.11 Damage to membrane proteins during lipid	
	peroxidation	304
	4.9.12 Toxicity of peroxides	306
	4.9.13 Isoprostanes	307
	4.9.14 Platelet activating factor and lipid peroxidation	307
	4.9.15 Cholesterol oxidation	308
	4.9.16 Peroxidation of microsomes	310
	4.9.17 Acceleration of lipid peroxidation by species other	
	than oxygen radicals	311
	4.9.18 Peroxidation of other molecules	313
	4.9.19 Repair of lipid peroxidation	313
4.10	Mechanisms of damage to cellular targets by oxidative	
	stress: protein damage	313
	4.10.1 Chemistry and significance of protein damage	315
	4.10.2 Damage to specific amino-acid residues	316
4.11	Consequences of oxidative protein damage: interference	
	with cell function	319
4.12	How organisms deal with oxidative protein damage	320
	4.12.1 Repair	320
	4.12.2 Protein degradation	321
	4.12.3 The proteasome	321
4.13	Consequences of oxidative stress: adaptation	322
	4.13.1 Bacterial redox regulation: oxyR	322
	4.13.2 Bacterial redox regulation: soxRS	323
	4.13.3 Bacterial redox regulation: the role of iron	323
	4.13.4 Redox regulation in yeast	324
	4.13.5 Redox regulation in mammals: NF-κB	324
	4.13.6 Redox regulation in mammals: AP-1 and the	
	antioxidant response element	326
	4.13.7 GA-binding protein	327

			Contents	xvii
	4.14	Are ROS/RNS important signal molecules in vivo?		327
		4.14.1 It can occur, but does it matter?		329
	4.15	Heat-shock and related 'stress-induced' proteins		330
		4.15.1 Chaperones		331
		4.15.2 The role of ubiquitin		333
		4.15.3 Haem oxygenase as a heat-shock protein		333
		4.15.4 Bacterial stress proteins		333
		4.15.5 Heat-shock transcription factor		334
	4.16	Cytokines		334
		$4.16.1 \text{ TNF}\alpha$		335
		4.16.2 Interleukins		336
		4.16.3 The acute-phase response		336
	4.17	Consequences of oxidative stress: cell death		337
		4.17.1 Necrosis		337
		4.17.2 Apoptosis		338
		4.17.3 Genetics and mechanism of apoptosis		340
	4.18	Summary: what is oxidative stress?		341
		rences		343
	Note	S		350
5	Dete	ction of free radicals and other reactive species:		
		oing and fingerprinting		351
	5.1			351
	5.2	ESR and spin trapping		352
		5.2.1 Spin trapping		355
		5.2.2 DMPO and PBN		357
		5.2.3 Metabolism of spin traps		359
		5.2.4 Trapping of thiyl radicals		360
	5.3	Other trapping methods, as exemplified by		261
		hydroxyl-radical trapping		361
		5.3.1 Aromatic hydroxylation		361
		5.3.2 The deoxyribose assay for hydroxyl radical		366 370
		5.3.3 Other trapping methods for hydroxyl radical		370
	5.4	Detection of superoxide		370
		5.4.1 Histochemical detection		376
	5.5	Detection of nitric oxide		376
		5.5.1 Interference by peroxynitrite		377
	- /	5.5.2 Calibration		377
	5.6	Detection of peroxynitrite		377
		5.6.1 Nitration assays		379
	5.7	Detection of chlorinating species		
	5.8	Detection of hydrogen peroxide		380 381
	F 0	5.8.1 Dichlorofluorescin diacetate		385
	5.9	Detection of singlet oxygen		385
		5.9.1 Direct detection		385 386
		5.9.2 Use of scavengers and traps		300

xviii	Contents	

	5.9.3 Deuterium oxide	386
5.10		
	(luminescence/fluorescence)	387
	5.10.1 Luminol and lucigenin	387
5.11	Fingerprinting methods:	
	oxidative DNA damage	388
	5.11.1 Introduction	388
	5.11.2 Products of DNA damage	388
	5.11.3 DNA damage in vivo	389
	5.11.4 Measurement of oxidative DNA damage:	
	basic principles	390
	5.11.5 Measurement of guanine damage products in	
	isolated DNA	390
	5.11.6 DNA isolation problems	392
	5.11.7 DNA-aldehyde adducts	393
5.12	Fingerprinting methods: lipid peroxidation	393
	5.12.1 Measurement of lipid peroxidation; general	
	principles	393
	5.12.2 Loss of substrates	393
	5.12.3 Measurement of peroxides	399
	5.12.4 Diene conjugation	400
	5.12.5 Interpretation of conjugated diene assays	400
	5.12.6 Measurement of hydrocarbon gases	402
	5.12.7 Light emission	404
	5.12.8 Measurement of fluorescence	405
	5.12.9 Parinaric acid	407
	5.12.10 The thiobarbituric acid test	407
	5.12.11 Urinary TBARS	411
	5.12.12 Isoprostanes	411
	5.12.13 Aldehydes other than MDA:	
	4-hydroxy-2- <i>trans</i> -nonenal	412
	5.12.14 Summary	412
5.13	Fingerprinting methods: protein damage by	
	ROS and RNS	413
	5.13.1 Reactive nitrogen species	413
	5.13.2 Reactive chlorine species	416
	5.13.3 Reactive oxygen species	416
	5.13.4 The carbonyl assay	416
	5.13.5 Can 'total' oxidative protein damage be	
	measured in vivo?	417
5.14	Fingerprinting methods: small molecules	422
	5.14.1 Ascorbate	422
	5.14.2 Uric acid	422
5.15	Assays of total antioxidant activity	422
	5.15.1 How useful are total antioxidant assays?	425
Refe	rences	425

	Contents	XIX
Read	ctive species as useful biomolecules	430
6.1	Introduction	430
6.2	Radical enzymes: ribonucleotide reductase	430
	6.2.1 The enzyme mechanism	431
	6.2.2 Inhibitors of the enzyme	432
	6.2.3 An alternative radical	432
6.3	Cobalamin radical enzymes	432
6.4	Pyruvate-metabolizing enzymes	434
6.5	Oxidation, carboxylation and hydroxylation	
	reactions	435
6.6	Yet more useful peroxidase enzymes	436
	6.6.1 Thyroid-hormone synthesis	437
	6.6.2 An 'anti-molestation' spray	437
	6.6.3 A fertilization membrane	438
	6.6.4 Lignification and ligninolysis	439
	6.6.5 Light production	441
6.7	Phagocytosis	442
0.7	6.7.1 Phagocyte recruitment and adhesion	446
	6.7.2 The killing mechanism of phagocytes	448
	6.7.3 Significance of extracellular ROS/RNS production	
	by phagocytes	462
	6.7.4 Bacterial and fungal avoidance strategies	465
6.8	NAD(P)H oxidases in other cell types	465
0.0	6.8.1 Endothelial cells	465
	6.8.2 Lymphocytes and fibroblasts	466
	6.8.3 Sensing of hypoxia	466
	6.8.4 Platelets	466
	6.8.5 Other cells	467
6.9	Fruit ripening and the 'wound response' of plant tissues	467
0.9	6.9.1 Lipoxygenases	467
	6.9.2 The wound response	469
	6.9.3 The hypersensitive response	470
6.10	Animal lipoxygenases and cyclooxygenases: stereospecific	170
0.10	lipid peroxidation	471
	6.10.1 Eicosanoids: prostaglandins and leukotrienes	471
		471
	6.10.2 Prostaglanding and thromboxanes	473
	6.10.3 Prostaglandin structure	473
	6.10.4 Prostaglandin synthesis	474
	6.10.5 Regulation by 'peroxide tone'	476
	6.10.6 Prostacyclins and thromboxanes	477
	6.10.7 Gene knockouts	4//
	6.10.8 Leukotrienes and other lipoxygenase	170
	products	478
D 6	6.10.9 Commercial PUFAs: a warning	481
	erences	481 484
Note		484

7	Oxid	lative stress and antioxidant protection: some	
		ial cases	485
	7.1	Introduction	485
	7.2	Erythrocytes	485
		7.2.1 What problems do erythrocytes face?	487
		7.2.2 Solutions: antioxidant defence enzymes	489
		7.2.3 Solutions: low-molecular mass antioxidants	490
		7.2.4 Erythrocyte peroxidation in health and disease	490
		7.2.5 Glucose-6-phosphate dehydrogenase deficiency	491
		7.2.6 Solutions: destruction	491
	7.3	Erythrocytes as targets for toxins	493
		7.3.1 Nitrite	493
		7.3.2 Hydrazines	493
		7.3.3 Sulphur-containing haemolytic drugs	495
	7.4	Inborn defects in erythrocyte antioxidant defences:	
		the link to malaria	495
		7.4.1 Favism	495
		7.4.2 Malaria, oxidative stress and an ancient Chinese herb	497
	7.5	Chloroplasts	499
		7.5.1 Structure and genetics	499
		7.5.2 Trapping of light energy	. 499
		7.5.3 The splitting of water	501
		7.5.4 What problems do chloroplasts face?	502
		7.5.5 'Catalytic' metal ions in plants?	505
		7.5.6 Solutions: antioxidant defence enzymes	505
		7.5.7 Ascorbate and glutathione	507
		7.5.8 Plant tocopherols	507
		7.5.9 Carotenoids	508
		7.5.10 The xanthophyll cycle	509
		7.5.11 Solutions: repair and replacement	510
	7.6	Chloroplasts as targets for toxins	510
		7.6.1 Inhibition of electron transport and carotenoid synthesis	510
		7.6.2 Bipyridyl herbicides	511
		7.6.3 Air pollutants	514
		7.6.4 Environmental stress	515
	7.7	The eye	516
		7.7.1 What problems does the eye face?	518
		7.7.2 Solutions	519
	- 0	7.7.3 The question of carotenoids	521
	7.8	Reproduction and oxidative stress	522
		7.8.1 Pre-conception	522
		7.8.2 Post-conception	524
	7.0	7.8.3 Normal and premature birth	526
	7.9	The skin	529
		7.9.1 Insults to the skin	530
		7.9.2 Inflammation	533

			Contents	xxi
		7.9.3 The solutions		534
	7.10			534
	7.10	7.10.1 Does exercise cause oxidative damage?		535
		7.10.2 Exercise, health and free radicals		536
		7.10.3 Muscle as a target for toxins		536
	Refe	erences		537
	Note			543
	1400			0.10
8	Free	radicals, 'reactive species' and toxicology		544
	8.1	Introduction		544
		8.1.1 What is toxicology?		544
		8.1.2 Principles of toxin metabolism		544
		8.1.3 How can ROS/RNS contribute to toxicology:		546
	8.2			547
		8.2.1 CCl ₄ synthesis: a free-radical chain reaction		548
		8.2.2 Toxicity of CCl ₄		548
		8.2.3 How does CCl ₃ cause damage?		550
	8.3			552
		8.3.1 Chloroform and bromotrichloromethane		553
		8.3.2 Bromoethane and bromobenzene		553
		8.3.3 Halothane		554
		8.3.4 Molecules similar to halothane		556
		8.3.5 Pentachlorophenol and related environmental		
		pollutants		556
	8.4	Redox-cycling toxins: bipyridyl herbicides		557
		8.4.1 Toxicity to bacteria		557
		8.4.2 Protection by extracellular SOD		557
		8.4.3 Toxicity to animals		558
		8.4.4 Why is paraquat toxic to the lung?		559
		8.4.5 Paraquat, lipid peroxidation and hydroxyl radic	al	
		formation		560
	8.5	Diabetogenic drugs		561
		8.5.1 Alloxan		561
		8.5.2 Streptozotocin		563
	8.6	Redox-cycling toxins: diphenols and quinones		564
		8.6.1 Interaction with O_2 and superoxide		564
		8.6.2 Formation of hydroxyl radical		565
		8.6.3 Menadione and quinone reductase		
		(DT diaphorase)		566
		8.6.4 Substituted dihydroxyphenylalanines and		
		'manganese madness'		569
		8.6.5 Neurotoxicity of 6-hydroxydopamine		570
		8.6.6 Methyl-DOPA		570
		8.6.7 Benzene and its derivatives		570
		8.6.8 Toxic-oil syndrome		571

xxii	Contents

8.7	Redox-cycling agents: toxins derived from Pseudomonas	
	aeruginosa	572
8.8	Alcohols	573
	8.8.1 Ethanol	573
	8.8.2 Allyl alcohol and acrolein	575
8.9	Paracetamol (acetaminophen)	576
8.10	Air pollutants	577
	8.10.1 Nitrogen dioxide	577
	8.10.2 Ozone	581
	8.10.3 Sulphur dioxide	583
	8.10.4 Mixtures	584
8.11	Toxicity of complex mixtures: cigarette smoke and other	
	'toxic smokes'	584
	8.11.1 Chemistry of cigarette smoke	584
	8.11.2 Mechanisms of damage by cigarette smoke	587
	8.11.3 Lung defences against cigarette smoke	588
	8.11.4 Adaptation	589
	8.11.5 Other tobacco usage	590
	8.11.6 Fire smoke	590
	8.11.7 Diesel exhaust	590
8.12	Toxicity of metals	591
	8.12.1 Cause or consequence?	591
	8.12.2 Titanium	591
	8.12.3 Aluminium	591
	8.12.4 Lead	594
	8.12.5 Vanadium	594
	8.12.6 Molybdenum	595
	8.12.7 Chromium	595
	8.12.8 Nickel	596
	8.12.9 Cobalt	596
	8.12.10 Mercury	597
	8.12.11 Cadmium	597
	8.12.12 Arsenic	597
8.13	Antibiotics	598
	8.13.1 Peroxidation of antibiotics	598
	8.13.2 Tetracyclines as pro- and anti-oxidants	598
	8.13.3 Quinone antibiotics	600
	8.13.4 Aminoglycoside nephrotoxicity and ototoxicity	600
8.14	Nitro and azo compounds	601
	8.14.1 Nitro radicals and redox cycling	601
	8.14.2 Further reduction of nitro radicals	601
	8.14.3 Cocaine teratogenicity	603
	8.14.4 Azo compounds	603
8.15	3-Methylindole	604
8.16	Radiation damage	604
	8.16.1 The oxygen effect	605

		Contents	xxiii
	8.16.2 The role of superoxide		606
	8.16.3 Hypoxic-cell sensitizers		607
	8.16.4 Food irradiation		608
	8.17 General conclusion		608
	References		609
9	Free radicals, other reactive species and disease		617
	9.1 Introduction		617
	9.1.1 Origin of oxidative stress in disease		619
	9.1.2 Consequences of oxidative stress in disease		621
	9.1.3 Significance of oxidative stress in disease		623
	9.2 Atherosclerosis		625
	9.2.1 Nature of atherosclerosis		625
	9.2.2 The link to fat		625
	9.2.3 What initiates atherosclerosis?		626
	9.2.4 What roles are played by ROS/RNS in atherosclerosis?		627
	9.2.5 Evidence relating to the 'oxidation theory'		027
	of atherosclerosis		630
	9.2.6 Chemistry of LDL oxidation		631
	9.2.7 Antioxidants and LDL oxidation		634
	9.2.8 The role of high-density lipoproteins		637
	9.2.9 Conclusion		638
	9.3 Hypertension		638
	9.4 Diabetes		639
	9.4.1 Oxidative stress and the origins of diabetes		639
	9.4.2 Oxidative stress in diabetic patients		640
	9.4.3 Mechanisms of glucose toxicity: aldose reduct	case	641
	9.4.4 Non-enzymatic glycation and glycoxidation		641
	9.4.5 How important is oxidative stress in diabetes?		645
	9.5 Ischaemia—reperfusion		645
	9.5.1 Consequences of hypoxia		646
	9.5.2 Reoxygenation injury		646
	9.5.3 Adaptation to hypoxia: the role of transcript	ion	C 10
	factors		648
	9.5.4 Intestinal ischaemia—reoxygenation		648
	9.5.5 Cardiac ischaemia—reoxygenation		649 654
	9.5.6 Ischaemic preconditioning9.5.7 Shock-related ischaemia—reoxygenation		655
	9.5.8 Birth trauma		655
	9.5.9 Kidney damage		656
	9.5.10 Liver transplantation		658
	9.5.11 Organ preservation fluids		658
	9.5.12 The eye		659
	9.5.13 Limbs, digits, and sex organs		659
	9.5.14 Plants		660

XX1V	Contents

	9.5.15 Chemical ischaemia-reoxygenation: carbon	
	monoxide poisoning	660
	9.5.16 Freezing injury	660
9.6	,	661
	9.6.1 Anti-inflammatory effects of antioxidants	661
	9.6.2 Tissue damage by inflammation	662
	9.6.3 Are ROS/RNS important mediators of	
	autoimmune diseases?	663
	9.6.4 Clastogenic factors	663
	9.6.5 Antiphospholipid antibodies	664
	9.6.6 Artefacts of sample storage: a cautionary note	664
9.7	Rheumatoid arthritis	664
	9.7.1 The normal joint	665
	9.7.2 The RA joint	665
	9.7.3 Oxidative damage in RA	666
	9.7.4 Sources of ROS/RNS in RA	667
	9.7.5 Consequences of oxidative damage in RA	674
	9.7.6 Iron and rheumatoid arthritis	675
	9.7.7 Alkaptonuria	677
9.8	Inflammatory bowel disease	677
	9.8.1 The salazines	678
9.9	Other chronic inflammations	678
	9.9.1 The pancreas	678
	9.9.2 Other parts of the gastro-intestinal tract	679
9.10	Lung damage and the adult respiratory distress syndrome	679
	9.10.1 Oxygen and the lung	679
	9.10.2 Phagocytes and adult respiratory distress syndrome	680
	9.10.3 Oxidative stress and ARDS	681
	9.10.4 Lung transplantation	684
	9.10.5 Asthma	684
9.11	Cystic fibrosis	685
	9.11.1 Cystic fibrosis and carotenoids	686
9.12	Oxidative stress and cancer: a complex relationship	687
	9.12.1 The cell cycle	687
	9.12.2 Tumours	688
	9.12.3 Carcinogenesis	689
	9.12.4 Oncogenes	691
	9.12.5 Tumour-suppressor genes	694
	9.12.6 ROS/RNS and carcinogenesis	694
	9.12.7 Changes in antioxidant defences in cancer	699
	9.12.8 Transition metals and cancer	700
9.13	Carcinogens: oxygen and others	701
	9.13.1 Carcinogen metabolism	702
	9.13.2 Benzpyrene	705
	9.13.3 Detoxification of carcinogens	705
	9.13.4 Carcinogens and oxidative DNA damage	706

	Contents	XXV
	9.13.5 Peroxisome proliferators	706
	9.13.6 Reactive nitrogen species	707
9.14		710
	9.14.1 Natural products in chemotherapy	710
	9.14.2 Bleomycin	711
	9.14.3 Quinone antitumour agents	715
	9.14.4 Protein antitumour drugs	720
	9.14.5 Resistance to cancer chemotherapy	721
9.15	- ·	
	system: general principles	721
	9.15.1 Introduction	721
	9.15.2 Energy metabolism	722
	9.15.3 Calcium and nitric oxide	723
	9.15.4 Excitotoxicity	725
	9.15.5 Why should the brain be prone to oxidative stress?	726
	9.15.6 Consequences of oxidative stress	729
	9.15.7 Antioxidant defences in the brain	731
9.16	Oxidative stress and ischaemic or traumatic brain injury	733
	9.16.1 Definition of terms	733
	9.16.2 Mediators of damage	734
	9.16.3 Therapeutic interventions	735
	9.16.4 Traumatic injury	735
9.17	Oxidative stress in Parkinson's disease	736
	9.17.1 Pathology of the disease	736
	9.17.2 Treatment	737
	9.17.3 What is the cause of PD?	738
	9.17.4 Oxidative stress and mitochondrial defects in PD	740
	9.17.5 Distinguishing cause from consequence	740
9.18	Oxidative stress in Alzheimer's disease	744
	9.18.1 Pathology of the disease	744
	9.18.2 The nature of amyloid in AD	746
	9.18.3 Genetics of AD	748
	9.18.4 Mechanisms of plaque toxicity	749
	9.18.5 Aluminium in Alzheimer's disease	75 0
9.19	Amyotrophic lateral sclerosis	751
	9.19.1 ALS and superoxide dismutase	751
	9.19.2 Mechanisms of SOD toxicity	752
	9.19.3 Oxidative damage in ALS	754
9.20	Other neurodegenerative diseases	755
	9.20.1 Down's syndrome	755
	9.20.2 Multiple sclerosis	755
	9.20.3 Neuronal ceroid lipofuscinoses	756
	9.20.4 Huntington's disease	757
	9.20.5 Friedreich's ataxia	758
	9.20.6 Tardive dyskinesia	759
	9.20.7 Prion diseases	759

XXV1	Contents
71/1 V I	Conticuts

		9.20.8 Does emotional stress lead to oxidative stress?	760
	9.21	Oxidative stress and viral infections	761
		9.21.1 Origin of oxidative stress	761
		9.21.2 HIV infection	762
		9.21.3 Oxidative stress in HIV disease?	764
		9.21.4 Redox regulation of viral expression	765
		9.21.5 Drug toxicity	765
	9.22	Conclusion	767
•	Refe	rences	767
	Note	·S	783
10	Agei	ng, nutrition, disease and therapy: a role	
	for a	ntioxidants?	784
	10.1	Introduction	784
	10.2	Theories of ageing	784
		10.2.1 General principles of ageing	784
		10.2.2 What features of ageing must theories explain?	785
		10.2.3 Genetic theories of ageing	786
		10.2.4 Human disorders of premature ageing	786
		10.2.5 Telomeres and telomerase	788
		10.2.6 Damage-accumulation theories of ageing	789
	10.3	Oxidative damage: a common link between all the	
		ageing theories?	790
		10.3.1 Experimental tests of the theory: altering	
		antioxidant levels	793
		10.3.2 Transgenic organisms	795
		10.3.3 Does antioxidant protection fail with age?	796
		10.3.4 Does net oxidative damage increase with age?	798
		10.3.5 Lipofuscin	799
		10.3.6 Ceroid	800
		10.3.7 The free-radical theory of ageing: current status	802
		10.3.8 Differentiation	802
	10.4	Nutrition, health and oxidative stress	803
		10.4.1 Lessons from epidemiology	803
		10.4.2 Problems of interpretation	805
		10.4.3 Types of study	806
		10.4.4 Cause and consequence	807
		10.4.5 Experimental epidemiology	811
		10.4.6 The need for biomarkers	813
		10.4.7 Some examples of epidemiological studies	814
		10.4.8 A status summary: antioxidants and	
		cardiovascular disease	816
		10.4.9 The Linxian study	817
		10.4.10 The Finnish study (α -tocopherol/ β -carotene	
		cancer prevention study) and CARET	817
		10.4.11 Other dietary factors and cardiovascular disease	819

		Contents	xxvii
	10.5	Antioxidants and the treatment of disease	820
		10.5.1 Therapeutic antioxidants	820
		10.5.2 Approaches to antioxidant characterization	821
		10.5.3 Superoxide dismutase	828
		10.5.4 Mimics of SOD	831
		10.5.5 Spin traps	832
		10.5.6 Vitamins C and E and their derivatives	837
		10.5.7 Other chain-breaking antioxidants: probucol	
		and ubiquinol	838
		10.5.8 BHA, BHT and plant phenolics	839
		10.5.9 The lazaroids	839
		10.5.10 Thiol compounds	840
		10.5.11 Glutathione peroxidase 'mimics'	842
	10.6	Iron chelators	843
		10.6.1 Desferrioxamine	843
		10.6.2 Other iron-chelating agents	851
	10.7	0	852
		10.7.1 Xanthine oxidase inhibitors	852
		10.7.2 Inhibitors of ROS generation by phagocytes	853
		10.7.3 Inhibitors of nitric oxide synthase	854
	Refer	rences	854
	Notes	s	859
Ap	pendix	x I Some basic chemistry for the life scientist	860
		A1.1 Atomic structure	860
		A1.2 Bonding between atoms	868
		A1.2.1 Ionic bonding	868
		A1.2.2 Covalent bonding	869
		A1.2.3 Non-ideal character of bonds	871
		A1.2.4 Hydrocarbons and electron	
		delocalization	873
		A1.3 Moles and molarity	875
		A1.4 pH and p K_a	875
		A1.5 Some useful data	876
An	pendix	x II Some basic molecular biology for the chemist	880
P	r	A2.1 Introduction	880
		A2.2 Transcription and editing	881
		A2.3 Translation	881
		A2.4 Regulation of transcription	883
		A2.5 Structure and regulation of	
		transcription factors	885
		A2.5.1 Zinc fingers	885
		A2.5.2 Leucine zippers	886
		A2.6 Cell growth signals, kinases and immediate	300
		early genes	886

ntent	
f	ntents

	A2.7	Identifying DNA-binding proteins in the	
		laboratory	887
	A2.8	Reverse transcription	888
	A2.9	Studying the genome	888
	A2.10	Recombinant DNA technology	890
	A2.11	Libraries	891
	A2.12	Polymerase chain reaction	892
	A2.13	Gene expression in mammalian cells	892
	A2.14	Antisense technology	894
	A2.15	Transgenic organisms	894
	References		897
Index			899