Contents

No	otation	XV
1	Computational materials modelling from first principles 1.1 Density functional theory 1.2 Examples of materials modelling from first principles 1.3 Timeline of DFT calculations in materials modelling 1.4 Reasons behind the popularity of density functional theory 1.5 Atomistic materials modelling and emergent properties	13 13 16 17
2	Many-body Schrödinger equation 2.1 The Coulomb interaction 2.2 Many-body Schrödinger equation 2.3 Atomic units 2.4 Clamped nuclei approximation 2.5 Independent electrons approximation 2.6 Exclusion principle 2.7 Mean-field approximation 2.8 Hartree-Fock equations 2.9 Kohn-Sham equations	19 19 20 23 25 27 29 30 32 35
3	Density functional theory 3.1 Total energy of the electronic ground state 3.2 Kohn-Sham equations 3.3 The local density approximation 3.4 Self-consistent calculations 3.5 Remit of density functional theory and limitations	36 36 39 40 46 49
4	Equilibrium structures of materials: fundamentals 4.1 The adiabatic approximation 4.2 Atomic forces 4.3 Calculating atomic forces using classical electrostatics 4.4 How to find the equilibrium configuration using calculated forces	51 51 54 59 62
5	Equilibrium structures of materials: calculations vs. experiment 5.1 Structure of molecules 5.2 Structure of crystals 5.3 Comparison of DFT structures with X-ray crystallography 5.4 Structure of surfaces 5.5 Comparison of DFT surface reconstructions with STM	66 66 69 72 76 80
6	Elastic properties of materials 6.1 Elastic deformations 6.2 Intuitive notions of stress and strain using computer experiments 6.3 General formalism for the elastic properties of solids 6.4 Calculating elastic constants using the DFT total energy	87 87 88 91 94

6.5 6.6 6.7	The stress theorem	96 98 99
7 Vil 7.1 7.2 7.3 7.4	brations of molecules and solids Heuristic notion of atomic vibrations Formal theory of vibrations for classical nuclei Calculations of vibrational eigenmodes and eigenfrequencies	102 102 106 111 115
8 Ph 8.1 8.2 8.3 8.4 8.5	onons, vibrational spectroscopy and thermodynamics Basics of Raman and neutron scattering spectroscopy Going beyond the classical approximation for nuclei Vibrons and phonons Phonon density of states Phonon DOS and pressure—temperature phase diagrams	123 123 131 137 140 142
9 Bar 9.1 9.2 9.3 9.4 9.5	Kohn-Sham energies and wavefunctions Calculation of band structures using DFT Basics of angle-resolved photoelectron spectroscopy Metals, insulators and semiconductors The band gap problem	152 152 155 162 168 173
10.1 10.2 10.3	lectric function and optical spectra The dielectric function of a model solid General properties of the dielectric function Using DFT to calculate dielectric functions Advanced concepts in the theory of the dielectric function	177 177 189 193 204
11 Der 11.1 11.2 11.3 11.4 11.5	The Dirac equation and the concept of spin Charge density and spin density Spin in a system with many electrons Spin and exchange energy Spin in density functional theory Examples of spin-DFT calculations	207 207 214 220 222 227 230
Append	lix A Derivation of the Hartree-Fock equations	239
Appendix B Derivation of the Kohn-Sham equations		243
Appendix C Numerical solution of the Kohn-Sham equations		246
Appendix D Reciprocal lattice and Brillouin zone		
Appendix E Pseudopotentials		
References		
Index		