Phillip Griffiths, John Morgan

Rational Homotopy Theory and Differential Forms

Second Edition

"Rational homotopy theory is today one of the major trends in algebraic topology. Despite the great progress made in only a few years, a textbook properly devoted to this subject still was lacking until now... The appearance of the text in book form is highly welcome, since it will satisfy the need of many interested people. Moreover, it contains an approach and point of view that do not appear explicitly in the current literature."

—Zentralblatt MATH (Review of First Edition)

"The monograph is intended as an introduction to the theory of minimal models. Anyone who wishes to learn about the theory will find this book a very helpful and enlightening one. There are plenty of examples, illustrations, diagrams and exercises. The material is developed with patience and clarity. Efforts are made to avoid generalities and technicalities that may distract the reader or obscure the main theme. The theory and its power are elegantly presented. This is an excellent monograph."

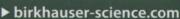
—Bulletin of the American Mathematical Society (Review of First Edition)

This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented.

New to the Second Edition:

- Fully-revised appendices including an expanded discussion of the Hirsch lemma
- Presentation of a natural proof of a Serre spectral sequence result
- Updated content throughout the book, reflecting advances in the area of homotopy theory

With its modern approach and timely revisions, this second edition of *Rational Homotopy Theory and Differential Forms* will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.



1	Introduction		
2	Basic Concepts 2.1 CW Complexes 2.2 First Notions from Homotopy Theory 2.3 Homology 2.4 Categories and Functors	5 8 13 19	
3	CW Homology Theorem 3.1 The Statement 3.2 The Proof 3.3 Examples	21 21 22 24	
4	The Whitehead Theorem and the Hurewicz Theorem	27	
	of Homotopy Groups 4.2 The Whitehead Theorem 4.3 Completion of the Computation of $\pi_n(S^n)$ 4.4 The Hurewicz Theorem 4.5 Corollaries of the Hurewicz Theorem 4.6 Homotopy Theory of a Fibration 4.7 Applications of the Exact Homotopy Sequence	27 29 31 33 34 38 39	
5	Spectral Sequence of a Fibration 5.1 Introduction 5.2 Fibrations over a Cell 5.3 Generalities on Spectral Sequences 5.4 The Leray–Serre Spectral Sequence of a Fibration 5.5 Examples	41 42 43 45 48	
6	Obstruction Theory 6.1 Introduction 6.2 Definition and Properties of the Obstruction Cocycle	53 53 54	

	6.3	Further Properties	. 5'
	6.4	Obstruction to the Existence of a Section of a Fibration	. 5
	6.5	Examples	. 58
7	Eilei	nberg-MacLane Spaces, Cohomology, and Principal Fibrations.	6.
	7.1	Relation of Cohomology and Eilenberg-MacLane Spaces	63
	7.2	Principal $K(\pi, n)$ -Fibrations	64
8	Post	nikov Towers and Rational Homotopy Theory	69
	8.1	Rational Homotopy Theory for Simply Connected Spaces	73
	8.2	Construction of the Localization of a Space	79
9	deRl	nam's Theorem for Simplicial Complexes	
	9.1	Piecewise Linear Forms	83
	9.2	Lemmas About Piecewise Linear Forms	85
	9.3	Naturality Under Subdivision	88
	9.4	Multiplicativity of the deRham Isomorphism	00
	9.5	Connection with the C^{∞} deRham Theorem	89
	9.6	Generalizations of the Construction	90
10		the constitution	92
10	Diffe	rential Graded Algebras	95
	10.1	Introduction	95
	10.2	Hirsch Extensions	97
	10.3	Relative Cohomology	99
	10.4	Construction of the Minimal Model	100
11	Hom	otopy Theory of DGAs	103
	11.1	Homotopies	103
	11.2	Obstruction Theory	104
	11.3	Applications of Obstruction Theory	107
	11.4	Uniqueness of the Minimal Model	109
12	DGA	s and Rational Homotopy Theory	112
	12.1	Transgression in the Serre Spectral Sequence and the Duality	113
	12.2	Hirsch Extensions and Principal Fibrations	113
	12.3	Minimal Models and Postnikov Towers	114
	12.4	The Minimal Model of the deRham Complex	115
12			117
13	The H	Fundamental Group	119
	15.1	1-Minimal Models	119
	13.2	$\pi_1 \otimes \mathbb{Q}$	120
	13.3	Functorality	123
	13.4	Examples	125
14	Exam	ples and Computations	127
	14.1	Spheres and Projective Spaces	127
	14.2	Graded Lie Algebras	128
	14.3	The Borromean Rings	129
	14.4	Symmetric Spaces and Formality	121

Contents		xi
0011101110		78.8

	14.5	The Third Homotopy Group of a Simply Connected Space	132
	14.6	Homotopy Theory of Certain 4-Dimensional Complexes	134
	14.7	Q-Homotopy Type of BU _n and U _n	135
	14.8	Products	137
	14.9	Massey Products	138
15	Func	torality	141
	15.1	The Functorial Correspondence	141
	15.2	Bijectivity of Homotopy Classes of Maps	144
	15.3	Equivalence of Categories	148
16	The I	Hirsch Lemma	151
	16.1	The Cubical Complex and Cubical Forms	151
	16.2	Hirsch Extensions and Spectral Sequences	154
	16.3	Polynomial Forms for a Serre Fibration	156
	16.4	Serre Spectral Sequence for Polynomial Forms	159
	16.5	Proof of Theorem 12.1	163
17	Quill	en's Work on Rational Homotopy Theory	165
	17.1	Differential Graded Lie Algebras	165
	17.2	Differential Graded Co-algebras	166
	17.3	The Bar Construction	167
	17.4		169
	17.5	Quillen's Construction	169
18	A_{∞}	Structures and C_{∞} -Structures	177
	18.1	Operads, Rooted Trees, and Stasheff's Associahedron	
	18.2	A_{∞} -Algebras and A_{∞} -Categories	
	18.3	C_{∞} -Algebras and DGAs	183
19	Exer	cises	187
Ref	erence	es	223