Contents

Preface xix

Organization of the Book xxi

Learning Objectives and Tool Development xxvi

Analytics and Diagnostics xxviii

Acknowledgments xxxii

I Introduction and Tools

1 The Energy System 3

- A. Why Does Energy Matter? 4
 - 1. Energy, Output, Income, and Welfare 4
- B. How Much Energy Is Needed? 7
 - 1. Determining Energy Requirements 7
 - 2. Population (P) 9
 - 3. Per Capita Income (GDP/P) 11
 - 4. Energy Intensity (E/GDP) 11
 - 5. Aggregating Energy Needs and Impacts 14
- C. What Are the Key Questions to Examine in the Energy System? 15
- D. Which Tools Are Most Useful? 17
 - 1. A Bountiful Toolkit 17
 - 2. Systems Thinking 18
- E. What Constrains the Energy System? 25
 - 1. Scarcity 25
 - 2. Input (Supply) Constraints 29
 - 3. Conversion, or Capital and Infrastructure, Constraints 30

2

	4.	Output (Demand) Constraints 30
	5.	The Fundamental Tension between Innovation and Depletion 31
Key	/ Tei	rms 32
App	pend	lix 1: Compound Growth 33
Me	asuı	ring and Valuing Energy 37
A.	Ph	ysics of Energy 38
	1.	Types of Energy Available for Use 38
	2.	Primary Sources of Energy 40
	3.	A Basic Energy Supply Chain 43
	4.	Forecasting Energy Supply and Demand Volumes 44
B.	A	Deeper Look at Energy Transformations 49
	1.	Energy vs. Power 49
	2.	How Energy Is Transformed 52
	3.	Laws of Thermodynamics 55
C.	Fir	nishing the Energy System Map 58
	1.	Natural Resource Inputs 58
	2.	The Role of Capital Inputs in the Energy System 59
	3.	Ecosystem Outputs of Emissions and Waste 62
	4.	A Complete Map of the Energy System's Stocks and Flows 63
D.	Un	derstanding System Dynamics: Stocks and Flows 63
	1.	Stocks and Flows 63
	2.	Informed by Feedback Loops 65
	3.	Create Complex Behaviors 66
E.	Cre	eating Motion in the System: Market Design and Function 69
	1.	Supply and Demand: Volumes and Values 69
	2.	Markets and Methods of Structured Exchange 71
	3.	A System in Balance 75
Key	Ter	rms 78
App	end	ix 2: Costs and Prices 79
Imp	prov	ing the Energy System 83
A.	Ma	arket Failures 84
	1.	Problems of Market Structure 86
	2.	Problems of Market Scope 90
	3.	Information Asymmetries 92
	4.	Nonmarket (Government) Failures 95

B. Behavioral Economics

1. Causes of Behavioral Errors

96

II

	2. Intervention Implications of Behavioral Economics 100
C.	Fixing System Errors 101
	1. Market Interventions 101
	2. Should Governments Intervene? 107
	3. Policy Tools 110
D.	How Policy and Markets Interact 116
Ke	y Terms 117
Ap	pendix 3: Measuring Cost and Benefits of Energy Subsidies 118
The Electricity System	n 127
4 Ele	ectricity and Grid Operation 131
A.	Electricity's Role in Modern Society 132
	1. The Remarkable 1880s <i>133</i>
	2. Creating the First Regulated Electric Utilities 136
	3. Today's Electricity Grid Technology 137
В.	Electricity: A Bundle of Services 141
C.	Today's Electricity Grid 149
	1. Global Industry Overview 149
	2. US Industry Overview 152
D.	Managing Regulated Utilities 155
	1. Investment and Cost-of-Service Recovery 155
	2. Grid Regulation: A Complex Set of Objectives 162
E.	Modern Variations on Grid Management 170
	1. Restructuring US Utilities 170
	 Planning, Scheduling, and Dispatch under Restructured Utilities 178
F.	Threats to Successful Grid Operation: A Systems Approach 183
Ke	ey Terms 189
AŢ	ppendix 4: A Review of Financial Concepts 190

5	Cri	d Economics 197
3	A.	Levelized Cost of Electricity (LCOE) Generation 198
	Α.	1. Levelized Cost in Principle 199
		2. LCOE: The Four-part Model 200
	D	3. Key Choices and Sensitivities in LCOE Analysis 204
	В.	Buying Wholesale Electricity (Energy) 209
		1. Wholesale Electricity Markets 209
		2. Establishing Electricity Supply Curves 211
		3. Forward Markets 214
	C	4. Determining the Efficiency of the Outcomes 215
	C.	, b
		1. Buying Capacity 217
	IZ.	2. Buying Transmission 219
		7 Terms 221
	App	pendix 5: Developing and Financing Energy Projects 222
6	Coa	al, Oil, and Gas for Electricity 233
	A.	Obtaining Coal 234
		1. The First Industrial Energy 235
		2. Obtaining and Using Coal Today 237
		3. Coal Reserves and Production 242
	B.	Coal Use in Electricity Generation 250
		1. Coal Combustion for Electricity Generation 251
		2. Costs for Coal Generation 254
		3. Coal Demand in Electricity 255
	C.	Coal System Constraints 258
		1. Case against Coal 259
		2. Cleaner Coal Innovations 263
		3. Coal's Growing Capital Challenge 266
	D.	Natural Gas in Electricity 268
		1. Gas Combustion Technologies 269
		2. Economics of Natural Gas in Electricity 272
	E.	Oil in Electricity 274
		1. Various Combustion Technologies: Utility Scale 275
		2. Stationary Diesel Generators 277
	Key	Terms 280
	App	pendix 6: Supply Risk and Hedging Strategies 281

7	Hy	drop	ower and Nuclear Power 287
	A.	The	e "Old" Renewables Context 289
	B.	Hy	dropower 291
		1.	The Evolution of Hydroelectric Dams 292
		2.	Economics of Hydropower 301
		3.	The Complex Calculus for New Dam Construction 306
	C.	Nu	clear Power 312
		1.	History and Issues of Nuclear Power 312
		2.	Technology and Physical Limits 316
		3.	Operating Today's Nuclear Power Fleet 324
		4.	Building New Nuclear Plants 330
	Key	/ Ter	ms 336
	App	pend	ix 7: Overnight Costs and Completion Risk 337
8	Rer	iewa	able Electricity 349
	A.	The	e Rise of the New Renewables 351
		1.	Access to Financial Capital 352
		2.	Dispatchability and Intermittency 357
		3.	The Prospect for Utility-Scale Renewables 362
	B.	Wi	nd Energy 363
		1.	History of Onshore Wind Technology 364
		2.	Wind Power Economics 371
		3.	Offshore Wind Power Prospects 378
	C.	Sol	ar Energy 380
		1.	History of Solar Technology 380
		2.	Solar Power Economics 387
	D.	Bio	omass and Biogas 391
		1.	Biomass Electricity 393
		2.	Biogas Electricity 396
	E.	Ge	othermal Electricity 398
		1.	Geothermal Resources and Electricity Generation 398
		2.	Geothermal Electricity Economics and Risks 404
	F.	Oce	ean Energy 406
		1.	Characterizing Ocean Resources 406
		2.	Ocean Wave Electricity 408
		3.	Ocean Tidal Electricity 410
	Key	/ Ter	rms 413

Appendix 8: Revenue Risk and Contracting Output 414

9	Elec	etricity Demand Management 423
	A.	A View from the Demand Side 425
		1. Electricity Demand Is Driven by Devices 425
		2. A Morass of Market Failures 428
		3. The Impact of Load Reduction on Everyone Else 432
	B.	The Role of Energy Efficiency 435
		1. Key Components in Delivering Energy Efficiency 436
		2. Aggregate Impacts of Energy Efficiency 441
		3. Energy Efficiency Economics: Measuring Savings 443
		4. Policy and Market Responses to Deploy Efficiency 447
	C.	Demand Response Solutions 454
		1. Managing Demand 455
		2. Economics of Demand Response 459
	D.	Managing the Grid: The Smart Grid 463
		1. The Technology of the Smart Grid 465
		2. Paying for the Smart Grid 469
	Key	Terms 470
	App	endix 9: Financing Efficiency and Customer-side Solutions 471
10	Elec	etric Storage 477
	A.	The Many Pathways of Electric Storage 478
		1. Brief History of Electric Storage 479
		2. Chemistries and Technologies 480
		3. Relevant Performance Criteria 487
		4. The Global Storage Industry Today 492
	B.	Economics of Grid Storage 495
		1. Defining End Markets for Grid Storage: Timing 496
		2. Defining End Markets for Grid Storage: Location 500
		3. Relevant Economic Criteria and LCOS 502
	C.	Fuel Cells and Hydrogen 511
		1. Fuel Cells and Supporting Technologies 511
		2. Obtaining and Storing Hydrogen 515
		3. Economics of Hydrogen 520
	Key	Terms 523
	App	endix 10: Technology and Operational Risk 524

Key Terms

11	Dis	tributed Generation 529
	A.	Distributed Solar Generation 531
		1. History of Solar PV 531
		2. Today's PV Technology 535
		3. Policy Drivers to Enable DG 543
	B.	Experience Curves and Disruption 547
		1. Progress and Parity 547
		2. Using Experience Curves to Forecast 554
		3. Using Experience Curves for Comparative Analytics 555
	C.	Distributed Solar PV Economics 559
		1. The Economics of Grid Parity 560
		2. Current Size and Prospects of the PV Industry 566
		3. Limits to Growth 571
	D.	Other Distributed Electricity Technologies 572
		1. Distributed Fuel-based Generators 573
		2. Distributed Renewable Generation and Storage 576
		3. Microgrids and Grid Defection 578
	Key	y Terms 580
	Ap	pendix 11: Policy and Environmental Risk 581
12	Rei	integrating the Electricity System 585
	A.	Forecasting Competitiveness in Individual Markets 587
		 Establishing the Fungible Criteria for Electricity Applications 588
		2. Comparing Cost Components of Competing Alternatives 591
		3. Defining the Relevant Market for Competitive Analysis 594
	B.	Shifting Competitiveness Will Alter Capital Flows in Electricity 599
		1. Investment and Risk in Deploying Capital 599
		2. Structuring a Forecast Model 603
	C.	Managing the Coming Disruptive Transformations in Electricity 607
		1. Regulatory Innovations for the Twenty-first Century 608
		2. New Business Models for Utilities 609

III The Transportation System

13	Tra	nsportation Services and Infrastructure 617
	A.	The History of Transportation 618
		1. History of Modes of Modern Transport 618
		2. Rising Transportation Demand 622
		3. Transportation Network Infrastructure 624
	B.	Transportation Economics 627
		1. The Economics of Liquid Fuel 627
		2. Approaches to Cost of Transport 629
		3. Improving Transportation Efficiency and Outcomes 634
	C.	Transportation Sector Interventions 645
		1. Moving Goods 646
		2. Moving People 658
	Key	Terms 666
	App	pendix 13: Infrastructure Investment 667
14	Oil	675
	A.	History of Oil 677
		1. Formation and Types of Oil 677
		2. The Rise of Oil Companies 685
		3. Modern Oil Industry Structure 692
	B.	Getting Oil to Market 696
		1. Upstream: Oil Exploration and Production 698
		2. Midstream: Moving Oil to the Refinery 707
		3. Downstream: Refining Oil into Useful Fuels 712
	C.	Economics of Oil 723
		1. Oil Resource and Reserve Calculations 723
		2. Forecasting Oil Supply and Demand 730
		3. Systems Thinking: Tensions and Responses 742
	D.	Tensions in the Global Oil Industry 745
		1. Oil Dependence Issues 746
		2. Oil Security Issues 748
		3. Oil and the Environment 750
	Key	Terms 752
	App	pendix 14: Commodity Trading and Markets 753

coni	enis				
15	Ne	New Fuels: Biofuels 761			
	A.	Biofuel: Yesterday's and Tomorrow's Vehicle Fuels 762			
		1. The First Fuel 763			
		2. Conventional Biofuels 765			
		3. Constraints on Expansion of First-generation Biofuels 770			
		4. Advances in Biofuel Feedstocks and Technology 777			
	B.	Biofuel Economics 781			
		1. Production Economics 782			
		2. Oil-Feedstock Linkages 784			
	C.	The Desirability and Methods of Incentivizing Biofuels 788			
		1. Defining the Goal 788			
		2. Policy Approaches 789			
		3. Differential Impacts of Biofuel across Transport Modes 794			
	Key	Terms 795			
	Ap	pendix 15: Technology Investment—R&D and Venture Capital 796			
16	Nev	w Motors: Electric Vehicles, Natural Gas, and Hydrogen 805			
	A.	Electric Vehicle Technology 806			
		1. History of Electric Cars 807			
		2. Technical Primer on EV Components 808			
		3. Linking EVs to the Grid 816			
	B.	EV Markets and Policy 819			
		1. Economic Analysis 820			
		2. Adoption Constraints and Market Definition 825			
		3. Scaling Up EVs 831			
		4. Supporting EV Deployment 839			
		5. Are EVs a Disruptive Technology? 842			
	C.	Natural Gas Vehicles 843			
		1. How NGVs Work 843			
		2. Arguments for and against NGVs 847			
		3. Supporting NGV Deployment 851			
	D.	Hydrogen Fuel Cell Vehicles 854			
		1. Technical Primer on Components 854			
		2. The Potential for Hydrogen FCV Deployment 857			
	E.	Summary of Innovation Pathways in Transportation (Section			

Postscript)

Key Terms

858

IV The Thermal Energy System 865

17	Th	ermal	Dema	nd	and	Supply	86	9
		Г.	TI		T 1		070	

- A. Energy Use in Industry 870
 - 1. Industry Types and Total Energy Use 870
 - 2. Industrial Thermal Energy Use 872
 - 3. Industrial Heat Supply Options 880
 - 4. Improving Industrial Thermal Energy 884
- B. Energy Use in Buildings 888
 - 1. Building Types and Total Energy Use 889
 - 2. Building Thermal Applications 894
 - 3. Fuel Options 902
 - 4. Improving Building Performance 907
- C. Storing Heat 916
 - 1. Low- and Medium-Temperature Heat Storage 916
 - 2. High-Temperature Heat Storage 918

Key Terms 920

Appendix 17: Retrofits and Repowering 921

18 Natural Gas 925

- A. The Emergence of Natural Gas 927
 - 1. The Origin of Natural Gas 927
 - 2. Natural Gas Supply Chain and Delivery Infrastructure 932
 - 3. Governing the Natural Gas Industry 938
- B. Economics of Natural Gas 942
 - 1. Global Supply of Natural Gas 942
 - Sectoral Demand for Natural Gas 946
 - 3. Linking International Markets 951
- C. Innovations in Natural Gas 961
 - 1. Shale Gas 961
 - 2. Demand Growth and New Markets for Natural Gas 968
 - 3. The Future of Thermal Energy and Natural Gas (Section Postscript) 971

Key Terms 974

V Reintegrating the Energy System	977
-----------------------------------	-----

19	Eco	onomic System Interactions 979
	A.	Energy and Macroeconomics 980
		1. A Very Quick History of Macroeconomics 981
		 Measuring the Size of the Energy Industry in Economic Terms 992
		3. Energy Security and Dependence 1000
	B.	The Role of Energy in Economic Development 1006
		1. Energy Access around the World 1007
		2. National and International Scope of Energy Development 101
		3. City- and Regional-level Scope of Energy Development 1019
		4. Household and Community Scope of Energy Development 1022
	C.	Economic Growth in an Energy-constrained World 1029
	Key	y Terms 1031
	App	pendix 19: Microfinance 1032
20	Eco	osystem Interactions 1041
	A.	Environmental Risks from Energy Production 1042
		1. Defining the Ecosystem and Its Services 1043
		2. Externalities Arising from Energy System Transformations 1048
		3. Relevant Energy System Environmental Policy 1053
		4. Other Policy Efforts to Improve Environmental Outcomes 1061
	B.	Climate Change Risks and Interventions 1065
		1. Climate Science 1065
		2. Climate Change Solutions 1075
		3. Markets vs. Policy in Addressing Climate Change 1082
	C.	Sustainable Development 1089
		1. Defining Sustainable Development 1090
		2. Measuring Sustainable Development 1092
		3. Achieving Sustainable Development 1096
	Var	v Terms 1008

Appendix 20: Climate and Other Environmental Finance

Postscript: The Future of the Energy System 1107

Forecasting the Energy System 1106

Evolutionary or Revolutionary Changes? 1114

A Series of Transformations 1115

Foundational Role of Energy in a Sustainable Society 1118

Index 1121