CONTENTS

PR	EFACE	XV
AC	KNOWLEDGMENTS	xix
AB	OUT THE AUTHOR	xxi
SYI	MBOLS USED IN THIS BOOK	xxiii
BO	OK ABSTRACT	xxix
1	Introduction	1
	1.1 A Difficult Problem, 1	
	1.2 An Expensive Problem, 2	
	1.3 Where Computational Techniques are Used, 3	
	Bibliography, 5	
	Dionography, 5	
PAI	RT I THE DRUG DESIGN PROCESS	7
2	Properties that Make a Molecule a Good Drug	9
	2.1 Compound Testing, 10	
	2.1.1 Biochemical Assays, 11	
	2.1.2 Cell-Based Assays, 13	

- 2.1.3 Animal Testing, 14
- 2.1.4 Human Clinical Trials, 15
- 2.2 Molecular Structure, 16
 - 2.2.1 Activity, 16
 - 2.2.2 Bioavailability and Toxicity, 24
 - 2.2.3 Drug Side Effects, 26
 - 2.2.4 Multiple Drug Interactions, 26
- 2.3 Metrics for Drug-Likeness, 27
- 2.4 Exceptions to the Rules, 33

Bibliography, 35

3 **Target Identification**

- 3.1 Primary Sequence and Metabolic Pathway, 41
- 3.2 Crystallography, 43
- 3.3 2D NMR, 44
- 3.4 Homology Models, 45
- 3.5 Protein Folding, 45

Bibliography, 46

- 4 **Target Characterization**
 - 4.1 Analysis of Target Mechanism, 47
 - 4.1.1 Kinetics and Crystallography, 48
 - 4.1.2 Automated Crevice Detection, 48
 - 4.1.3 Transition Structures and Reaction Coordinates, 49
 - 4.1.4 Molecular Dynamics Simulations, 49
 - 4.2 Where the Target is Expressed, 50
 - Pharmacophore Identification, 50 4.3
 - Choosing an Inhibitor Mechanism, 51 4.4
 - Bibliography, 52

The Drug Design Process for a Known Protein Target 5

- The Structure-Based Design Process, 53 5.1
- 5.2 Initial Hits, 55
- Compound Refinement, 56 5.3
- 5.4 ADMET, 67
- 5.5 Drug Resistance, 67

Bibliography, 68

41

The Drug Design Process for an Unknown Target 6

- The Ligand-Based Design Process, 71 6.1
- Initial Hits, 72 6.2
- Compound Refinement, 73 6.3
- ADMET. 74 6.4

Bibliography, 74

Drug Design for Other Targets 7

- 7.1 DNA Binding, 76
- RNA as a Target, 78 7.2
- Allosteric Sites, 79 7.3
- 7.4 Receptor Targets, 80
- 7.5 Steroids, 81
- 7.6 Targets inside Cells, 82
- 7.7 Targets within the Central Nervous System, 83
- Irreversibly Binding Inhibitors, 84 7.8
- 7.9 Upregulating Target Activity, 84

Bibliography, 85

Compound Library Design 8

- Targeted Libraries versus Diverse Libraries, 87 8.1
- 8.2 From Fragments versus from Reactions, 89
- Non-Enumerative Techniques, 90 8.3
- Drug-Likeness and Synthetic Accessibility, 91 8.4
- Analyzing Chemical Diversity and Spanning 8.5 known Chemistries, 93
- Compound Selection Techniques, 96 8.6

Bibliography, 99

COMPUTATIONAL TOOLS PART II AND TECHNIQUES

		ans and Cadeen	
9	Homology Model	Building	

- How much Similarity is Enough?, 106 9.1
- Steps for Building a Homology Model, 107 9.2
 - Step 1: Template Identification, 108 9.2.1
 - 9.2.2 Step 2: Alignment between the Unknown and the Template, 108

71

75

87

103

- 9.2.3 Step 3: Manual Adjustments to the Alignment, 110
- 9.2.4 Step 4: Replace Template Side Chains with Model Side Chains, 111
- 9.2.5 Step 5: Adjust Model for Insertions and Deletions, 111
- 9.2.6 Step 6: Optimization of the Model, 112
- 9.2.7 Step 7: Model Validation, 112
- 9.2.8 Step 8: If Errors are Found, Iterate Back to Previous Steps, 115

9.3 Reliability of Results, 116 Bibliography, 117

10 Molecular Mechanics

10.1 A Really Brief Introduction to Molecular Mechanics, 11910.2 Force Fields for Drug Design, 121Bibliography, 123

11 Protein Folding

- 11.1 The Difficulty of the Problem, 125
- 11.2 Algorithms, 127
- 11.3 Reliability of Results, 129
- 11.4 Conformational Analysis, 130

Bibliography, 131

12 Docking

- 12.1 Introduction, 133
- 12.2 Search Algorithms, 135
 - 12.2.1 Searching the Entire Space, 135
 - 12.2.2 Grid Potentials versus Full Force Field, 137
 - 12.2.3 Flexible Active Sites, 138
 - 12.2.4 Ligands Covalently Bound to the Active Site, 138
 - 12.2.5 Hierarchical Docking Algorithms, 139
- 12.3 Scoring, 141
 - 12.3.1 Energy Expressions and Consensus Scoring, 141
 - 12.3.2 Binding Free Energies, 141
 - 12.3.3 Solvation, 144
 - 12.3.4 Ligands Covalently Bound to the Active Site, 144
 - 12.3.5 Metrics for Goodness of Fit, 144
- 12.4 Validation of Results, 145
- 12.5 Comparison of Existing Search and Scoring Methods, 146
- 12.6 Special Systems, 153

125

- 12.7 The Docking Process, 155
 - 12.7.1 Protein Preparation, 156
 - 12.7.2 Building the Ligand, 156
 - 12.7.3 Setting the Bounding Box, 157
 - 12.7.4 Docking Options, 157
 - 12.7.5 Running the Docking Calculation, 158
 - 12.7.6 Analysis of Results, 158

Bibliography, 159

13 Pharmacophore Models

- 13.1 Components of a Pharmacophore Model, 163
- 13.2 Creating a Pharmacophore Model from Active Compounds, 164
- 13.3 Creating a Pharmacophore Model from the Active Site, 166
- 13.4 Searching Compound Databases, 167
- 13.5 Reliability of Results, 168

Bibliography, 169

14 QSAR

- 14.1 Conventional QSAR versus 3D-QSAR, 171
- 14.2 The QSAR Process, 172
- 14.3 Descriptors, 175
- 14.4 Automated QSAR Programs, 176
- 14.5 QSAR versus Other Fitting Methods, 177

Bibliography, 178

15 3D-QSAR

- 15.1 The 3D-QSAR Process, 182
- 15.2 3D-QSAR Software Packages, 184
- 15.3 Summary, 184

Bibliography, 184

16 Quantum Mechanics in Drug Design

- 16.1 Quantum Mechanics Algorithms and Software, 188
- 16.2 Modeling Systems with Metal Atoms, 191
- 16.3 Increased Accuracy, 191
- 16.4 Computing Reaction Paths, 193
- 16.5 Computing Spectra, 193

Bibliography, 194

161

171

181

17 De novo and Other AI Techniques

17.1 De novo Building of Compounds, 198

17.2 Nonquantitative Predictions, 201

17.3 Quantitative Predictions, 203

Bibliography, 205

18 Cheminformatics

- 18.1 Smiles, SLN, and Other Chemical Structure Representations, 208
- 18.2 Similarity and Substructure Searching, 209
- 18.3 2D-to-3D Structure Generation, 213
- 18.4 Clustering Algorithms, 214
- 18.5 Screening Results Analysis, 217
- 18.6 Database Systems, 222

Bibliography, 223

19 ADMET

- 19.1 Oral Bioavailability, 227
- 19.2 Drug Half-Life in the Bloodstream, 229
- 19.3 Blood-Brain Barrier Permeability, 231

19.4 Toxicity, 231

Bibliography, 234

20 Multiobjective Optimization

Bibliography, 240

21 Automation of Tasks

21.1 Built-In Automation Capabilities, 241

21.2 Automation Using External Utilities, 243 Bibliography, 244

PART III RELATED TOPICS

22 **Bioinformatics**

Bibliography, 251

197

207

225

237

241

245

	CONTENTS	xiii
23	Simulations at the Cellular and Organ Level	253
	23.1 Cellular Simulations, 25323.2 Organ Simulations, 256Bibliography, 256	
24	Synthesis Route Prediction	259
	Bibliography, 262	
25	Proteomics	263
	Bibliography, 264	
26	Prodrug Approaches	267
	Bibliography, 270	
27	Future Developments in Drug Design	273
	27.1 Individual Patient Genome Sequencing, 273	
	27.2 Analysis of the Entire Proteome, 27427.3 Drugs Customized for Ethnic Group or Individual	
	Patient, 274	
	27.4 Genetic Manipulation, 27527.5 Cloning, 276	
	27.6 Stem Cells, 277	
	27.7 Longevity, 278	
	Bibliography, 279	
Арр	pendix: About the CD	281
GL	OSSARY	285
	DEX	301