CONTENTS

	Acknowledgements	i)
	Foreword)
1	Introduction to Molecular Biology of RNA	1
1	1.1 Aims of this book	4
	1.2 DNA and RNA are composed of slightly	
	different building blocks	4
	1.3 Nucleotides are joined together through	
	a phosphodiester backbone to give	
	nucleotide chains	8
2	RNA can form versatile structures	11
	2.1 How do RNA molecules form structures?	11
	2.2 RNA secondary structure: RNA	
	molecules tend to form a number of	
	shorter helices compared with DNA	13
	2.3 RNA and DNA form different kinds	
	of double helix	17
	2.4 Five common secondary structure	
	motifs are found within RNA molecules	18
	2.5 RNA secondary structures can be worked	
	out experimentally and predicted	
	bioinformatically	19
	2.6 The formation of RNA helices is	
	stimulated by positively charged	
	molecules and particularly metal ions	23
	2.7 RNA molecules use a set of strategies	
	to build tertiary structures	24
	2.8 Summary of how RNAs build	
	structured molecules	27
	2.9 RNA structures can be used as	
	thermosensors	27
	2.10 RNA structures can be selected which	28
	bind to target molecules	28
	2.11 Riboswitches are shape-changing RNAs	
	which can flip gene expression patterns	
	on binding specific target molecules	31
3	Catalytic RNAs	36
	3.1 Three properties of RNA enable the	
	catalytic function of ribozymes	36
	3.2 What kinds of reactions do	
	ribozymes catalyse?	38

3.3 Ribozymes were first discovered	
through serendipity	40
3.4 Group I introns are spliced through a	
two-step mechanism which uses metal	
ions in their active sites	41
3.5 Metal ions play a key role in catalysis	
by Group I introns	42
3.6 Group II introns are also spliced through	
a two-step mechanism	43
3.7 RNA is inherently chemically unstable	
because of its 2' -OH group	45
3.8 Small ribonucleolytic ribozymes catalyse	
their own cleavage	46
3.9 The hammerhead ribozyme	48
3.10 The HDV ribozyme	50
3.11 Are ribozymes true catalysts?	52
3.12 The RNA world hypothesis: a time when	
RNA was used as a genetic material	52
3.13 Experiments have been carried out	
that might model the early steps	
that might have occurred during	
the evolution of life	53
The RNA-binding proteins	60
4.1 The RNA recognition motif (RRM)	62
4.2 The K-homology (KH) domain	65
4.3 The cold-shock domain	66
4.4 Double-stranded RNA-binding proteins	69
4.5 The zinc-finger domain	71
4.6 Other RNA-binding domains	73
4.7 Investigating protein-RNA interactions	76
Pre-mRNA splicing by the spliceosome	84
5.1 RNA splicing was discovered in a virus	84
5.2 Spliceosomal introns are critical for	
efficient eukaryotic gene expression	85
5.3 Introns enhance eukaryotic gene	
expression at several levels	88
5.4 Introns have an important role in	
evolution	89
5.5 The mechanism of pre-mRNA splicing	90
5.6 Splice sites	91
5.7 The spliceosome	93

4

5

C	on	te	nt	s

vi

	5.8	Spliceosomes assemble and		
		removed in a spliceosome cycle	0.1	
	EO	How the spliceosome works	06	
	5.10	The spliceosome cycle has been worked	90	
	5.10	out using in vitro ovtracto	100	
	E 11	A minor class of outanyotic spliceeremal	100	
	5.11	A minor class of eukaryotic spliceosomal	101	
	F 12	Introns have different splice sites	101	
	5.12	Spliceosomes can assemble through	102	
		intron and exon definition	103	
	5.13	Irans-splicing is common in trypanosome		
		parasites and in the nematode C. elegans,	107	
		where it enables efficient translation	106	
6	Reg	ulated alternative splicing	111	
	6.1	There are several different types of		
		alternative splicing	112	
	6.2	How frequent is alternative splicing?	112	
	6.3	How exons are recognized by the		
		splicing machinery	115	8
	6.4	Exon and intron definition control the		
		type of alternative splicing that operates	119	
	6.5	Three main factors can contribute to		
		alternative splicing regulation	121	
	6.6	Regulation of RNA splicing is controlled		
		by changes in the concentration of		
		RNA-binding proteins	121	
	6.7	Signal transduction pathways can regulate		
		alternative splicing by changing the		
		function and location of splicing factors	126	
	6.8	Transcription elongation speeds can		9
		regulate alternative splicing choices	127	
	6.9	Transcription can also modulate splicing		
		pathways via the recruitment of cofactors	130	
	6.10	Alternative splicing is critical for		
		normal animal development	130	
	6.11	RNA splicing regulators play a		
		critical role in nervous system		
		development in animals	134	
7	Dro-	mPNA splicing defects in		
'	dow	lopmont and disease	120	
	7 1	Mutations affecting the splicing code	150	
	1.1	can be catastrophic for some function	100	
	7.7	Can be catastrophic for gene function	138	
	1.2	Mutations in splicing control sequences		
		are very frequent causes of numan	140	
		genetic disease	140	
	1.3	Genetic mutations create a new splice	2.42	10
		site in a premature ageing disease	141	
	1.4	Mutation of an exonic splicing enhancer		
		In a DINA damage control gene leads to	144	
		breast cancer	144	

		7.5 How are mutations that cause splicing	1.4.4
		defects diagnosed?	144
		7.6 Diseases caused by mutations affecting	147
)		77 Conce on coding important colice come	14/
		7.7 Genes encoding important spliceosomal	
,		the ave disease ratinitis nigmentors (PD)	140
		The eye disease retinitis pigmentosa (RP)	148
		7.8 The genes encoding splicing proteins can	101
		7.0 Splising shapped can shapped the	151
5		7.9 Splicing changes can change the	150
		710 Diseases saysed by mis expression of	152
		7.10 Diseases caused by mis-expression of	255
)		revers of splicing factors	155
		7.11 Splicing as a target to treat cancer	128
		7.12 Manipulating pre-mkinA splicing offers	150
		a route to treating muscular dystrophy	158
		7.13 Splicing as a route to therapy for	1/2
		Infectious diseases like AIDS	162
i	8	Co-transcriptional pre-mRNA processing	166
		8.1 Transcription and the RNA polymerases	166
)		8.2 Formation of the ends of an mRNA	169
		8.3 The C-terminal domain (CTD) of RNA	
		polymerase II	172
		8.4 The links between splicing, transcription,	
		and chromatin	173
		8.5 The spatial organization of pre-mRNA	
		processing	178
3		8.6 Histone mRNA 3' end formation	181
	9	Nucleocytoplasmic traffic of messenger RNA	186
		9.1 Step 1: mRNAs are 'dressed for export'	
		as they are synthesized by the addition	
		of nuclear export adaptors	188
		9.2 Step 2: mRNA transcripts reach the nuclear	
		pore by random nuclear diffusion	193
		9.3 Step 3: Transit through the nuclear pore	
		requires addition of nuclear export receptors	194
		9.4 Step 4: Disassembly of the export	
		competent mRNP	199
		9.5 Step 5: Export receptors shuttle between	
6		the nucleus and the cytoplasm	200
		9.6 mRNA export can be hijacked by	
		some viruses	201
		9.7 mRNA export can become defective	
		in human diseases	202
	10	Messenger RNA localization 2	205
		10.1 The need for mRNA localization	205
		10.2 The machinery of mRNA localization	207
		10.3 Classical examples of mRNA localization	
		in development	png

	10.4	Localization of mRNA in differentiated	
		somatic cells	212
	10.5	Localization of mRNA in algae and plants	217
1	Tran	slation of messenger RNA	222
	11.1	What is translation?	222
	11.2	The structure and function of the ribosome	222
	11.3	Deciphering the genetic code	224
	11.4	The three phases of translation	229
	11.5	Regulation of mRNA translation	234
	11.6	Masked messages	240
	11.7	Manipulating translation	244
2	Stah	ility and degradation of mRNA	250
-	121	Messenger RNAs have a half-life	250
	12.1	Sites and mechanisms of mRNA	
	12.2	degradation	252
	123	The process of mRNA degradation	253
	12.5	Extracellular stimuli influence the	
	12.4	stability of mRNA	259
	125	Nonsense-mediated non-stop and	201
	12.5	no-go mRNA decay	260
	12.6	Degradation of mRNA in bacteria and plants	264
3	RNA	editing	268
	13.1	What is RNA editing and why might it exist?	268
	13.2	$A \rightarrow I$ editing takes place by	
		modification of adenosine through	240
	10.0	removal of an amino group	269
	13.3	The biological consequences of A-JI KNA	
		editing: adenosine and inosine form	
		different base pairs in RNA secondary	271
	12.4	structure	2/1
	13.4	what does A - I mRINA editing do?	212
	13.5	A - I editing plays an important role	270
	12.0	In the function of tRNAs	219
	13.0	C→U RNA editing takes place through	
		base deamination (removal of an amino	201
	127	group) of cytidine	281
	15.7	C-O RNA editing creates two different	
		torms of the APOB mRNA in different	
		tissues, and was the first RNA editing	201
	12.0	reaction to be discovered in animals	281
	13.8	APOB mRNAs are editing by an RNA	
		editing complex containing the cytidine	
	12.0	deaminase ApoBec I	283
	13.9	Apobec proteins play an important role in	
		innate immunity to retroviruses like HIV	
	12.10	and in generating an antibody response	284
	13.10	Trypanosome mitochondrial RNA is	
		edited by base insertions and deletions to	
		create ORFs from frameshifted transcripts	287

13.11	RNA editing was discovered in	
	trypanosomes by sequencing cDNAs	
	encoded by mitochondrial genes	289
13.12	Short RNAs called guide RNAs target	
	trypanosome mitochondrial RNA editing	289
13.13	Guide RNAs are used as a template for	
	RNA editing through uridine insertions	
	and deletions	291
13.14	Trypanosome mitochondrial RNA editing	
	requires nuclear-encoded proteins which	
	might be useful therapeutic targets	291
14 The	biogenesis and nucleocytoplasmic	
traff	ic of non-coding RNAs	295
14.1	The snoRNAs and scaRNAs: multiple	
	roles in RNA biogenesis	296
14.2	Structure and function of the nucleolus	302
14.3	Processing of tRNA and of mitochondrial	
	transcripts	304
14.4	SMN proteins and snRNP assembly	309
14.5	Nucleocytoplasmic traffic of non-coding RNA	314
14.6	Retroviruses have hijacked the RNA export	
	machinery to assist in the export of	
	partially processed mRNAs	328
15 The	'macro' RNAs: long non-coding	
RNA	s and epigenetics	334
RNA 15.1	s and epigenetics Epigenetic regulation and the epigenetic	334
RNA 15.1	as and epigenetics Epigenetic regulation and the epigenetic code	334 334
RNA 15.1	Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic	334 334
RNA 15.1 15.2	s and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression	334 334 337
RNA 15.1 15.2 15.3	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically	334 334 337
RNA 15.1 15.2 15.3	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called <i>XIST</i> epigenetically regulates the inactive X chromosome in	334334337
RNA 15.1 15.2 15.3	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals	334334337338
RNA 15.1 15.2 15.3 15.4	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called <i>XIST</i> epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a	334334337338
RNA 15.1 15.2 15.3 15.4	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called <i>XIST</i> epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as <i>XIST</i>	 334 337 338 341
RNA 15.1 15.2 15.3 15.4 15.5	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long	 334 337 338 341
RNA 15.1 15.2 15.3 15.4 15.5	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X	 334 337 338 341
RNA 15.1 15.2 15.3 15.4 15.5	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females	 334 337 338 341 342
RNA 15.1 15.2 15.3 15.4 15.5 15.6	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate	 334 337 338 341 342
RNA 15.1 15.2 15.3 15.4 15.5 15.6	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X	 334 337 338 341 342
RNA 15.1 15.2 15.3 15.4 15.5 15.6	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome	 334 337 338 341 342 343
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation	 334 337 338 341 342 343
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals	 334 337 338 341 342 343 344
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long	 334 337 338 341 342 343 344
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs	 334 337 338 341 342 343 344 345
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs Transcription of the H19 long non-coding	 334 337 338 341 342 343 344 345
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs Transcription of the H19 long non-coding RNA acts as a decoy for transcription of	 334 337 338 341 342 343 344 345 245
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs Transcription of the H19 long non-coding RNA acts as a decoy for transcription of the <i>IGF2</i> gene	 334 337 338 341 342 343 344 345 347
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs Transcription of the <i>H19</i> long non-coding RNA acts as a decoy for transcription of the <i>IGF2</i> gene The <i>AIRN</i> ncRNA epigenetically represses	 334 337 338 341 342 343 344 345 347
RNA 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10	As and epigenetics Epigenetic regulation and the epigenetic code Long ncRNAs are involved in epigenetic gene regulation of gene expression A long ncRNA called XIST epigenetically regulates the inactive X chromosome in female mammals The X inactivation centre contains a number of non-coding RNAs as well as XIST Non-placental mammals also use a long non-coding RNA to inactivate an X chromosome in females Fruit flies use a long ncRNA to upregulate expression from a single male X chromosome The logic of dosage compensation strategies used in flies and mammals Genetic imprinting uses long non-coding RNAs Transcription of the H19 long non-coding RNA acts as a decoy for transcription of the <i>IGF2</i> gene The <i>AIRN</i> ncRNA epigenetically represses <i>IGF2R</i> gene expression by directing	 334 337 338 341 342 343 344 345 347 246

Contents vii

Contents

	15.11	Long ncRNAs play an essential role in	340
	15.12	Long ncRNAs are involved in	549
		transcriptional enhancer function	351
	15.13	Antisense RNAs	352
16	The	short non-coding RNAs and gene	

silencing	358
16.1 Key concepts and common pathways	358
16.2 Discovery and mechanism of RNA	
interference	363
16.3 The uses of RNA interference	366
16.4 Discovery, biogenesis, and developmental	

roles of microRNAs 370

	10.5	manscriptional silencing by non-coding	
		RNAs in the centromere	376
	16.6	RNA-induced transcriptional silencing	
		of transposons	379
7	RNA	biology: future perspectives	390
	17.1	The emergence of transcriptomics	390
	17.2	The growing prominence of	
		non-coding RNAs	393
	17.3	RNA-guided genome editing	397
	17.4	Concluding remarks	400
	~		
	Gloss	ary	403
	Index	Stability and degradation of this May In-	415

16 E Transcriptional silansian bus

123 The process of militia departandments 253