Contents Foreword by Andreas Wild XXV Nanoelectronics for Digital Agenda by Paul Rübig and Livio Baldi XXXVII Electronics on the EU's Political Agenda by Carl-Christian Buhr XLI Preface by Livio Baldi and Marcel H. van de Voorde XLVII ## Volume 1 | Part One | rundamentals on Nanoelectronics 1 | |----------|---| | | | | 1 | A Brief History of the Semiconductor Industry 3 | | | Paolo A. Gargini | | 1.1 | From Microelectronics to Nanoelectronics and Beyond 3 | | 1.1.1 | You Got to Have Science, Genius! 3 | | 1.1.2 | What Would Science Be Without Technology? 5 | | 1.1.3 | The Magic of Economics 11 | | 1.1.4 | Back to the MOS 14 | | 1.1.5 | Technology Innovation Must Go On! 15 | | 1.1.6 | Bipolar against MOS! 16 | | 1.1.7 | Finally It All Comes Together 20 | | 1.2 | The Growth of the Semiconductor Industry: An Eyewitness Report 22 | | 1.2.1 | The Making of the PC Industry 23 | | 1.2.2 | The DRAM Wars 26 | | 1.2.3 | The Introduction of New Materials 30 | | 1.2.4 | Microprocessors Introduction Cycle Goes from 4 to 2 Year 31 | | 1.2.5 | The 300 mm Wafer Size Conversion 31 | | 1.2.6 | The 1990s: Scaling, Scaling 33 | | 1.2.7 | Equivalent Scaling: Designers Will Never Know What We | | | Have Done 34 | | 1.2.8 | Is There Life Beyond the Limits of CMOS and of Von Neumann | | | Architecture? 39 | | 1.2.9 | Nanoelectronics to the Rescue 41 | | 1.2.10 | The New Manhattan Project 45 | | Contents | | | |----------|--|----| | 1.2.11 | System Requirements and Heterogeneous Integration 48 | | | 1.2.12 | Evolve or Become Irrelevant 49 | | | 1.2.13 | Bringing It all Together 51 | | | | Acknowledgments 52 | | | 2 | More-than-Moore Technologies and Applications 53 Joachim Pelka and Livio Baldi | | | 2.1 | Introduction 53 | | | 2.2 | "More Moore" and "More-than-Moore" 54 | | | 2.3 | From Applications to Technology 56 | | | 2.4 | More-than-Moore Devices 58 | | | 2.4.1 | Interacting with the Outside World 58 | | | 2.4.2 | Powering 59 | | | 2.4.3 | More-than-Moore Technologies 60 | | | 2.5 | Application Domains 61 | | | 2.5.1 | Automotive 61 | | | 2.5.2 | Health Care 62 | | | 2.5.2.1 | Wearable Health Care 62 | | | 2.5.2.2 | Biochips and Lab-on-Chips 63 | | | 2.5.3 | Safety and Security 65 | | | 2.5.4 | Industrial Applications 67 | | | 2.5.4.1 | Integrated Power 67 | | | 2.5.4.2 | Lighting 69 | | | 2.6 | Conclusions 70 | | | | Acknowledgement 71 | | | | References 71 Submediation and a small of the business and the business and the business are small or the business and the business are small or the business and the business are small or | | | | | | | 3 | Logic Devices Challenges and Opportunities in the Nano Era 73 | | | | Frédéric Boeuf | | | 3.1 | Introduction: Dennard's Scaling and Moore's Law Trends and | | | | Limits 73 at 120M temaga rulogial 13 | | | 3.2 | Power Performance Trade-Off for 10 nm, 7 nm, and Below 75 | | | 3.2.1 | Electrostatics of Advanced CMOS Devices 75 | | | 3.2.2 | | | | 3.2.2.1 | Switching Delay Formulation 78 | | | 3.2.2.2 | Effective Current and MOSFET Electrostatics 80 | | | 3.2.3 | Parasitics Capacitance in Logic Devices 81 | | | 3.2.3.1 | Effective Capacitance of an Inverter Switch 81 | | | 3.2.3.2 | Parasitic Capacitance Calculation Method 83 | | | 3.2.4 | Power Dissipation in Transistor Devices 84 | | | 3.2.4.1 | Static Power Dissipation 84 | | | 3.2.4.2 | 1 | | | 3.2.4.3 | Limitation of the Minimum Voltage Supply: The $V_{\rm th}$ Variability | 87 | | 3.2.5 | Summary of the Key Points of CMOS Devices 88 | | | 3.3 | Device Structures and Materials in Advanced CMOS Nodes 89 | | X | 3.3.1 | SCE Immune MOSFET Architectures 89 | |----------|--| | 3.3.1.1 | Fully Depleted SOI, UTB, and UTBB Structures 90 | | 3.3.1.2 | FinFET and Double-Gate Devices 93 | | 3.3.1.3 | Gate-All-Around Transistors and Nanowires 96 | | 3.3.2 | Parasitic Capacitances in Advanced Device Structures 97 | | 3.3.3 | High-Mobility Materials and Devices 100 | | 3.3.3.1 | Transistor Current in Ultrashort Devices 100 | | 3.3.3.2 | Material Engineering for Transport Enhancement 101 | | 3.3.3.3 | Choice of Materials for Advanced CMOS 103 | | | References 105 | | 1 | Gaudenzio Meneghesso, Peter Moents Middel Statute, single relandari vice media | | 4 | Memory Technologies 113 | | 4.1 | Barbara De Salvo and Livio Baldi | | 4.1 | Introduction 113 | | 4.2 | Mainstream Memories (DRAM and NAND): Evolution and Scaling | | | Limits 115 | | 4.3 | Emerging Memories Technologies 120 | | 4.3.1 | Ferroelectric Memories 120 | | 4.3.2 | Magnetic Memories 122 | | 4.3.3 | Phase Change Memories 124 | | 4.3.4 | Resistive RAMs: OxRAM and CBRAM 126 | | 4.3.5 | Other Memory Concepts 129 The Management of the Concepts 129 The Concepts 129 The Management of Manageme | | 4.4 | Emerging Memories Architectures 130 | | 4.4.1 | From Cell to Arrays 130 | | 4.4.2 | 3D RRAM Architectures 132 | | 4.5 | Opportunities for Emerging Memories 133 | | 4.5.1 | Storage Class Memory 133 | | 4.5.2 | Embedded Memories 133 | | 4.6 | Conclusions 134 | | | References 135 | | | | | | | | Part Two | Devices in the Nano Era 137 | | 5 | Beyond-CMOS Low-Power Devices: Steep-Slope Switches for | | 3 | | | | Computation and Sensing 139 Adrian M. Ionescu | | 5.1 | Digital Computing in Post-Dennard Nanoelectronics Era 139 | | 5.2 | Beyond CMOS Steep-Slope Switches 143 | | 5.3 | Convergence of Requirements for Energy-Efficient Computing and | | 92.3 | Sensing Technologies: Enabling Smart Autonomous Systems for IoE 148 | | 5.4 | Conclusions and Perspectives 149 | | | References 151 | | 6 | RF CMOS 153 | |---------|--| | | Patrick Reynaert, Wouter Steyaert and Marco Vigilante | | 6.1 | Introduction 153 | | 6.2 | Toward 5G and Beyond 153 | | 6.3 | CMOS @ Millimeter-Wave: Challenges and Opportunities 156 | | 6.4 | Terahertz in CMOS 159 | | 6.5 | Conclusions 161 | | | References 162 | | | | | 7 | Smart Power Devices Nanotechnology 163 | | | Gaudenzio Meneghesso, Peter Moens, Mikael Östling, Jan Sonsky, and | | | Steve Stoffels | | 7.1 | Introduction 163 | | 7.2 | Si Power Devices 164 | | 7.2.1 | Discrete versus Integrated Power Devices 164 | | 7.2.2 | Low-Voltage MOSFETs 166 | | 7.2.3 | High-Voltage MOSFETs 170 | | 7.2.4 | IGBTs 173 | | 7.2.5 | Device versus Application Landscape 175 | | 7.3 | SiC Power Semiconductor Devices 176 | | 7.3.1 | High-Voltage Blocking 178 | | 7.3.2 | SiC Diodes/Rectifiers 179 | | 7.3.3 | Switch Devices 180 | | 7.3.4 | JFETs and MOSFETs 180 | | 7.3.5 | Bipolar Junction Transistors 182 | | 7.3.6 | Ultrahigh Voltage–High-Injection Devices 183 | | 7.3.7 | Concluding Remarks and Issues of Concerns for SiC Power | | | Devices 183 | | 7.4 | Power GaN Device Technology 184 | | 7.4.1 | GaN Material and Device Physics 184 | | 7.4.2 | Device Architectures 187 | | 7.4.2.1 | HEMT (Schottky) 187 | | 7.4.2.2 | MISHEMT 188 | | 7.4.2.3 | Vertical Devices 188 | | 7.4.3 | Ohmic Contacts 190 | | 7.4.4 | E-MODE Devices 191 | | 7.4.4.1 | Thin AlGaN Gate Barrier 191 | | 7.4.4.2 | Charge Incorporation 191 | | 7.4.4.3 | P-GaN or P-AlGaN Gate Structure 192 | | 7.4.4.4 | HEMT/FET Hybrid 192 | | 7.4.4.5 | Cascode 192 | | 7.4.5 | Breakdown Voltage Engineering and Limitations 193 | | 7.4.5.1 | Buffer Engineering 193 | | 7.4.5.2 | Substrate Implantation 194 | | 7.4.5.3 | Substrate Removal 194 | |-----------|--| | 7.4.6 | Dispersion Phenomena 195 | | 7.4.6.1 | Surface-Induced Dispersion 195 | | 7.4.6.2 | Buffer-Induced Dispersion 197 | | 7.4.7 | Conclusion 197 | | 7.5 | New Materials and Substrates for WBG Power Devices 198 | | | References 201 | | | | | 8 | Integrated Sensors and Actuators: Their Nano-Enabled Evolution | | | into the Twenty-First Century 205 | | | Frederik Ceyssens and Robert Puers | | 8.1 | Introduction 205 | | 8.2 | Sensors 208 | | 8.2.1 | Mechanical Sensors 208 | | 8.2.1.1 | Pressure Sensors and Microphones 208 | | 8.2.1.2 | Gyroscopes and Accelerometers 209 | | 8.2.1.3 | Resonators 210 | | 8.2.2 | Vision/IR 210 | | 8.2.3 | Terahertz (Thz) Imaging 211 | | 8.2.4 | Radar/Lidar 212 | | 8.2.5 | Gas Sensors 212 | | 8.2.6 | Biosensors 213 | | 8.3 | Actuators 214 | | 8.3.1 | Electrostatic, Electromagnetic, and Piezoelectric 214 | | 8.3.2 | Pneumatic, Phase Change, and Thermal Actuators 216 | | 8.3.3 | Artificial Muscles 216 | | 8.4 | Molecular Motors 217 | | 8.5 | Transducer Integration and Connectivity 218 | | 8.6 | Conclusion 219 | | 0.0 | References 220 | | | References 220 | | | | | Part Thre | e Advanced Materials and Materials Combinations 223 | | | Challenge for Life years win Entre To Otto Leve Sedan (1992 C. M.) | | 9 | Silicon Wafers as a Foundation for Growth 225 | | 0.1 | Peter Stallhofer | | 9.1 | Introduction 225 | | 9.2 | Si Availability and Technologies to Produce Hyperpure Silicon in | | | Large Quantities 226 | | 9.2.1 | Metallurgical Silicon Production 226 | | 9.2.2 | Purification of Metallurgical Silicon via Trichlorosilane 227 | | 9.2.3 | Production of Electronic Grade Polysilicon 228 | | 9.2.4 | Monocrystalline Silicon Production 229 | | 9.2.4.1 | CZ Growth Method 229 | | 9.2.4.2 | FZ Growth Method 232 | | | | | 9.2.5 | Process Sequence of Silicon Wafer Production 232 | |---------|---| | 9.2.5.1 | Mechanical Treatment 233 | | 9.2.5.2 | Chemical Treatment 234 | | 9.2.5.3 | Chemical–Mechanical Polishing 234 | | 9.2.5.4 | Final Cleaning and Packaging 235 | | 9.2.5.5 | Epitaxy 236 | | 9.3 | The Exceptional Physical and Technological Properties of | | | Monocrystalline Silicon for Device Manufacturing 237 | | 9.3.1 | Doping 237 | | 9.3.2 | Crystal Structure 237 | | 9.3.3 | Silicon Dioxide 238 | | 9.3.4 | Intrinsic Defect Categories 239 | | 9.3.5 | Defect Kinetic Behavior 240 | | 9.4 | Silicon and New Materials 241 | | 9.5 | Example of Actual Advanced 300 mm Wafer Specification for | | | Parameters 242 | | | Acknowledgments 242 | | | References 242 | | | | | 10 | Nanoanalysis 245 | | | Narciso Gambacorti | | 10.1 | Three-Dimensional Analysis 246 | | 10.1.1 | X-Ray Tomography for the Analysis of TSV 247 | | 10.1.2 | Progress in Atom Probe Tomography for Semiconductor | | | Analysis 249 | | 10.2 | Strain Analysis 250 | | 10.2.1 | State-of-the-Art Strain Analysis by Precession Electron | | | Diffraction 252 | | 10.2.2 | X-Ray for Strain Measurements 253 | | 10.3 | Compositional and Chemical Analysis 256 | | 10.3.1 | Advanced Characterization of HKMG Stacks for Sub-14 nm | | | Technology Nodes 256 | | 10.3.2 | TEM Composition Analysis of NMOS Device 259 | | 10.4 | Conclusions 260 | | 7.4.3 | Glossary 261 | | | Acknowledgments 262 | | | Deferences 262 | | | | | | | | | | ## Part Four Semiconductor Smart Manufacturing 265 | 11 | Front-End Processes 267 | | |------|--------------------------------------|-----| | | Marcello Mariani and Nicolas Possémé | | | 11.1 | A Standard MOS FEOL Process Flow | 267 | | 11.2 | Cleaning 268 | | | 11.2.1 | Wet Cleaning 268 | |----------------------|--| | 11.2.2 | Advanced Aqueous Cleaning 268 | | 11.2.3 | Nonaqueous Advanced Cleaning Approaches 269 | | 11.2.4 | Advanced Drying Techniques 270 | | 11.3 | Silicon Oxidation 271 | | 11.4 | Doping and Dopant Activation 272 | | 11.4.1 | Coimplantation 273 | | 11.4.2 | Defect Engineering and Surface Treatment 273 | | 11.4.3 | Flash Anneal, Laser Annealing, and Nonthermal Activation | | | Techniques 274 | | 11.4.4 | Plasma Doping 274 | | 11.4.5 | Molecular Monolayers Doping 275 | | 11.5 | Deposition 275 | | 11.5.1 | Thin Film Deposition 275 | | 11.5.2 | Atomic Layer Deposition 277 | | 11.5.3 | Other Monolayer Deposition Techniques 279 | | 11.6 | Etching 279 | | 11.6.1 | Wet Etching 279 | | 11.6.2 | Dry Etching 280 | | 11.6.3 | Limitation of Plasma Etching for Critical Dimension Control at the | | | Atomic Scale 281 | | 11.6.4 | Existing Solutions 284 | | 11.6.5 | Plasma Etch Challenges for Nanotechnologies: ALE Wishes or | | | Reality? 285 | | | References 285 | | | Bibliography 288 | | | | | 12 | Lithography for Nanoelectronics 289 | | | Kurt Ronse | | 12.1 | Historical Perspective of Lithography for Nanoelectronics 289 | | 12.1.1 | Traditional "Geometrical Scaling" by Optical Lithography 289 | | 12.1.2 | From Lithography to Patterning as Driver for Geometrical Scaling 291 | | 12.1.3 | Layout Optimization for Improved Printability 292 | | 12.2 | Challenges for Lithography in Future Technology Nodes 292 | | 12.2.1 | 193 nm Immersion Lithography with Multiple Patterning 292 | | 12.2.2 | Insertion of Extreme UV Lithography 294 | | 12.2.2.1 | EUVL Progress in Source 295 | | 12.2.2.2 | EUVL Progress in Masks 295 | | 12.2.2.3 | EUVL Progress in Resist 297 | | 12.2.2.4 | EUV Insertion into N7 298 | | 12.2.2.5 | EUV Lithography Extendibility toward N5 and Beyond 301 | | 12.2.3 | Directed Self-Assembly (DSA) 302 | | 12.2.3.1 | DSA Principles and Some DSA Flows 302 | | 12222 | | | 12.2.3.2
12.2.3.3 | DSA Challenges and Progress 303 DSA Insertion into N7 307 | | XVIII | Contents | | |-------|-----------|---| | | 12.2.3.4 | DSA Extendibility 309 | | | 12.2.4 | Alternative Lithographies: E-Beam Maskless, Nanoimprint 309 | | | 12.2.4.1 | Parallel E-Beam Direct Write Status and Challenges 309 | | | 12.2.4.2 | Nanoimprint Lithography Status and Challenges 311 | | | 12.3 | Pattern Roughness: The Biggest Challenge for Geometrical | | | 9.2.5.5 | Scaling 311 | | | 12.4 | Lithography Options in Previous and Future Technology Nodes 313
References 315 | | | | | | | 13 | Reliability of Nanoelectronic Devices 317 Anthony S. Oates and K.P. Cheung | | | 13.1 | Introduction 317 | | | 13.2 | Interconnect Reliability Issues 318 | | | 13.2.1 | Reliability of Porous Inter-Metal-Level Dielectrics (ILD) 318 | | | 13.2.2 | Reliability of Cu Conductors 320 | | | 13.3 | Transistor Reliability Issues 322 | | | 13.4 | | | | | | | | 13.5 | | | | | Acknowledgments 328 | | | | References 328 | | | Volume 2 | | | | Part Five | Circuit Design in Emerging Nanotechnologies 331 | | | 14 | Logic Synthesis of CMOS Circuits and Beyond 333 | | | | Enrico Macii, Andreas Calimera, Alberto Macii, and Massimo Poncino | | | 14.1 | Context and Motivation 333 | | | 14.2 | The Origin: Area and Delay Optimization 335 | | | 14.2.1 | Two-Level Optimization 336 | | | 14.2.2 | Multilevel Optimization 337 | | | 14.2.3 | Sequential Synthesis 339 | | | 14.3 | The Power Wall 340 | | | 14.3.1 | Dynamic Power 340 | | | 14.3.2 | Leakage Power 343 | | | 14.4 | Synthesis in the Nanometer Era: Variation-Aware 345 | | | 14.4.1 | Logic Synthesis for Manufacturability and PV Compensation 346 | | | 14.4.2 | Thermal-Aware Logic Synthesis 347 | | | 14.4.3 | Aging-Aware Logic Synthesis 348 | | | 14.5 | Emerging Trends in Logic Synthesis and Optimization 350 | | | 14.5.1 | Logic Synthesis for Approximate Computing 351 | | | 14.5.1 | Approximate Logic Synthesis (ALS) 352 | | | 14.5.2 | Design of Approximate IPs 353 | | | 14.5.4 | | | | 14.5.4.1 | | | | 14.5.4.1 | Emerging Devices 354 | | 14.5.4.2 | New Logic Primitive and Possible Implementation Styles 355 | | |----------|---|--| | 14.6 | Summary 358 | | | | References 358 | | | | | | | 15 | System Design in the Cyber-Physical Era 363 | | | | Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli | | | 15.1 | From Nanodevices to Cyber-Physical Systems 363 | | | 15.2 | Cyber-Physical System Design Challenges 365 | | | 15.2.1 | Modeling Challenges 365 | | | 15.2.2 | Specification Challenges 367 | | | 15.2.3 | Integration Challenges 368 | | | 15.3 | A Structured Methodology to Address the Design Challenges 370 | | | 15.3.1 | Coping with Complexity in VLSI Systems: Lessons Learned 370 | | | 15.3.2 | Platform-Based Design 373 | | | 15.3.3 | Contracts: An Overview 375 | | | 15.3.3.1 | Assume-Guarantee Contracts 375 | | | 15.3.3.2 | Horizontal and Vertical Contracts 378 | | | 15.4 | Platform-Based Design with Contracts and Related Tools 380 | | | 15.4.1 | Requirement Formalization and Validation 380 | | | 15.4.2 | Platform Component-Library Development 384 | | | 15.4.3 | Mapping Specifications to Implementations 386 | | | 15.4.3.1 | Architecture Design 387 | | | 15.4.3.2 | Control Design 388 | | | 15.5 | Conclusions 390 | | | | Acknowledgments 390 | | | | References 390 | | | | | | | 16 | Heterogeneous Systems 397 | | | | Daniel Lapadatu | | | 16.1 | Introduction 397 | | | 16.2 | Heterogeneous Systems Design 400 | | | 16.2.1 | Design Considerations 401 | | | 16.2.2 | Design Analysis 402 | | | 16.2.2.1 | Mechanical Design 404 | | | 16.2.2.2 | Electrical Design 405 | | | 16.2.2.3 | Thermal Design 409 | | | 16.2.2.4 | Reliability Design 410 | | | 16.2.3 | Assembly and Testing Design 412 | | | 16.3 | Heterogeneous Systems Integration 414 | | | 16.4 | Testing the Performance and Reliability of Heterogeneous | | | | Systems 418 | | | 16.5 | Conclusions 423 | | | | Acknowledgments 424 | | | | References 424 | | | XX | Contents | |----|----------| | | | | 17 | Nanotechnologies Testing 427 | |----------|--| | | Ernesto Sanchez and Matteo Sonza Reorda | | 17.1 | Introduction 427 | | 17.2 | Background 428 | | 17.3 | Current Challenges 433 | | 17.3.1 | SoCs and Embedded Instruments 433 | | 17.3.2 | Process Variations 435 | | 17.3.3 | Combining End-of-Manufacturing and In-Field Test 436 | | 17.4 | Testing Advanced Technologies 437 | | 17.4.1 | Resonant Tunneling Diodes and Quantum-Dot Cellular | | | Automata 438 | | 17.4.2 | Crossbar Array Architectures 441 | | 17.4.3 | Carbon Nanotubes 442 | | 17.4.4 | Silicon Nanowires FETs 443 | | 17.5 | Conclusions 444 | | | References 444 | | | | | | | | Part Six | Nanoelectronics-Enabled Sectors and Societal Challenges 447 | | 18 | Industrial Applications 449 | | | L. Baldi and M. Van de Voorde | | 18.1 | Introduction 449 | | 18.2 | Health, Demographic Change, and Well-being 450 | | 18.3 | Food Security, Sustainable Agriculture and Forestry, Marine and | | | Maritime and Inland Water Research, and the Bioeconomy 450 | | 18.4 | Secure, Clean, and Efficient Energy 451 | | 18.5 | Smart, Green, and Integrated Transport 451 | | 18.6 | Climate Action, Environment, Resource Efficiency, and Raw | | | Materials 452 | | 18.7 | Europe in a Changing World – Inclusive, Innovative, and Reflective | | | Societies 452 | | 18.8 | Secure Societies – Protecting Freedom and Security of Europe and | | | Its Citizens 452 | | | | | 19 | Health 455 | | | Walter De Raedt and Chris Van Hoof | | 19.1 | Introduction 455 | | 19.2 | The Worldwide Context 455 | | 19.3 | Requirements and Use Cases for Emerging Wearables 459 | | 19.3.1 | Assisted Living 460 | | 19.3.2 | Congestive Heart Failure (CHF) 461 | | 19.3.3 | Command Daint of Comma 162 | | | Cancer and Point of Care 462 | | 19.3.4 | Sleep Monitoring – Sleep Apnea 463 | | 19.3.6 | Fitness and Stress 465 | | |----------|---|---| | 19.3.7 | Pregnancy 466 | | | 19.3.8 | Advanced Computing Needs Only Grow 466 | | | 19.4 | Conclusions 467 | | | | References 468 | | | | | | | 20 | Smart Energy 471 | | | | Moritz Loske | | | 20.1 | Energy Revolution – Why Energy Does Have to | | | | Become Smart? 471 | | | 20.1.1 | Smart Energy and Systems 473 | | | 20.1.2 | Smart Energy Effect-Matrix 474 | | | 20.1.2.1 | Smart Generation 474 | | | 20.1.2.2 | Smart Storage 475 | | | 20.1.2.3 | Smart Transmission and Distribution 475 | | | 20.1.2.4 | Smart Consumption 475 | | | 20.1.2.5 | Energy Management 475 | | | 20.2 | Applications of Smart Energy Systems and their Societal | | | | Challenges 476 | | | 20.2.1 | Multi-energy Smart Grid 476 | | | 20.2.2 | High Voltage Transmission and Distribution Systems 478 | | | 20.2.3 | Microenergy Grid 480 | | | 20.2.4 | Energy Harvesting Systems 481 | | | 20.2.5 | Mobility 482 | | | 20.3 | Nanoelectronics as Key Enabler for Smart Energy | | | | Systems 483 | | | 20.3.1 | Key Products for Smart Energy systems 483 | | | 20.3.2 | Technological Requirements and Challenges 484 | | | 20.3.2.1 | Requirements of Power-Electronics 484 | | | 20.3.2.2 | Requirements of Micro-/Nanoelectronics 485 | | | 20.4 | Summary and Outlook 486 | | | | References 487 | | | | | | | 21 | Validation of Highly Automated Safe and Secure Vehicles 489 | 9 | | | Michael Paulweber | | | 21.1 | Introduction 489 | | | 21.2 | Societal Challenges 490 | | | 21.3 | Automated Vehicles 491 | | | 21.4 | Key Requirements to Automated Driving Systems 493 | | | 21.5 | Validation Challenges 496 | | | 21.6 | Validation Concepts 497 | | | 21.7 | Challenges to Electronics Platform for Automated Driving | | | | Systems 498 | | | 21.8 | Conclusion 499 | | | | References 499 | | | | | | | XXII | Contents | |------|----------| | | | | 22 | Nanotechnology for Consumer Electronics 501 | | |-----------|---|---| | | Hannah M. Gramling, Michail E. Kiziroglou, and Eric M. Yeatman | | | 22.1 | Introduction 501 | | | 22.1.1 | 2D Materials and Flexible Electronics 502 | | | 22.2 | Communications 503 | | | 22.3 | Energy Storage 506 | | | 22.4 | Sensors 509 | | | 22.4.1 | Motion Processing Units 510 | | | 22.4.2 | Nanosensors for Biomedical Applications 511 | | | 22.4.3 | Optical Sensors 513 | | | 22.5 | Internet-of-Things Applications 514 | | | 22.6 | Display Technologies 515 | | | 22.6.1 | Self-Illuminating Displays 516 | | | 22.6.2 | Reflective Displays 517 | | | 22.6.3 | Transparent Conductors 518 | | | 22.7 | Conclusions 520 | | | | References 520 | | | | | | | | | | | Part Sev | ven From Device to Systems 527 | | | | High Voltage Transmission and Distribution Systelebracks | | | 23 | Nanoelectronics for Smart Cities 529 | | | | Joachim Pelka | | | 23.1 | Why "Smart Cities"? 529 | | | 23.2 | Infrastructure: All You Need Is Information 531 | | | 23.3 | Nothing Will Work Without Energy 535 | | | 23.4 | Application: What Can Be Done with Information 537 | | | 23.4.1 | Smart Buildings 538 | | | 23.4.2 | Mobility and Transport 540 | | | 23.4.3 | Production and Logistics 543 | | | 23.5 | Trusted Hardware: Not Only for Data Security 546 | | | 23.6 | Closing Remarks 548 | | | 19.8 | Acknowledgement 548 | | | | Validation of Highly Automated Safe and Secore Mehicles 19889 | | | | | | | Part Eig | | | | r ure Eng | Values – European Visions – Technology Renewal | | | | and Extended Functionality 551 | | | | The Requirements of Settments of Settments Mark | | | 24 | Europe Positioning in Nanoelectronics 553 | | | 2-7 | Andreas Wild | | | 24.1 | What is the "European" Industry 553 | | | 24.1 | | | | 24.2.1 | European Strategic Initiatives 554 The European Commission 554 | , | | | The European Commission 554 | | | 24.2.2 | ECSEL Joint Undertaking 554 | | | 24.2.3 | Combining Instruments 555 | | |---------|--|----| | 24.3 | Policy Implementation Instruments 556 | | | 24.3.1 | In The World 556 | | | 24.3.2 | In Europe 557 | | | 24.4 | Europe's Market Position 558 | | | 24.4.1 | European Market Share: Consumption 559 | | | 24.4.2 | European Market Share: Supply 560 | | | 24.4.3 | European Manufacturing Capacities 563 | | | 24.5 | | | | | 3.5. Industry and Translation 602 | | | 25 | Thirty Years of Cooperative Research and Innovation in Europe: | | | | The Case for Micro- and Nanoelectronics and Smart Systems | | | | | | | | Dirk Beernaert and Eric Fribourg-Blanc | | | 25.1 | Introduction 567 | | | 25.1.1 | The European R&D Program in the European R&D Landscape 56 | 9 | | 25.2 | Nanoelectronics and Micro-Nanotechnology in the European | | | | Research Programs 570 | | | 25.3 | A Bit of History Seen from an ICT: Nanoelectronics Integrated | | | | Hardware Perspective 571 | | | 25.4 | ESPRIT I, II, III, and IV 572 | | | 25.5 | The 5th Framework (1998–2002) 574 | | | 25.6 | The 6th Framework (2002–2006) 575 | | | 25.7 | The 7th Framework (2007–2013) 576 | | | 25.8 | H2020 (2014–2020) 579 | | | 25.9 | Some Results of FP7 and H2020 581 | | | 25.9.1 | At Program Level 581 | | | 25.9.2 | The ICT Research in FP7 582 | | | 25.9.3 | Micro/Nanoelectronics and Smart Systems 582 | | | 25.10 | Results of the JTI ENIAC and ARTEMIS 583 | | | 25.11 | An Analysis of Beyond CMOS in FP7 and H2020 584 | | | 25.12 | MEMS, Smart Sensors, and Devices Related to Internet of | | | | Things 586 | | | 25.13 | From FP6 to FP7: An integrated approach for micro-nanoelectronic | CS | | | and micro-nanosystems 587 | | | 25.13.1 | Research cooperation between the Framework and Eureka | | | | initiatives 587 | | | 25.14 | Enabling the EU 2050+ Future: Superintelligence, Humanity, and the | ne | | | "Singularity" 589 | | | 25.15 | EU 2050±: Driven by a Superintelligence Ambient 590 | | | 25.16 | Conclusion 592 | | | 26 | The Education Challenge in Nanoelectronics 595 | | | | Susanna M. Thon, Sean L. Evans, and Annastasiah Mudiwa Mhaka | | | 26.1 | Introduction 595 | | | 26.2 | Traditional Programs in Nanoelectronics Education 596 | |--------|--| | 26.2.1 | Fields of Study 596 | | 26.2.2 | Topics of Study 596 | | 26.2.3 | Example Programs 598 | | 26.3 | Challenges in Nanoelectronics Education 600 | | 26.3.1 | Bridging the Disciplines 600 | | 26.3.2 | Theory versus Practice in Classwork 601 | | 26.3.3 | Resource Availability 601 | | 26.3.4 | New Applications 602 | | 26.3.5 | Industry and Translation 602 | | 26.3.6 | Degree Levels 603 | | 26.3.7 | Cultural Challenges 604 | | 26.4 | New Cross-Discipline Applications 604 | | 26.5 | Future Education Programs 605 | | 26.5.1 | Scenario A: Modification of Current University Approach 608 | | 26.5.2 | Scenario B: Comprehensive Nanoelectronics Education System 608 | | | Acknowledgments 610 | | | References 610 | | | | | 27 | Conclusions 613 | Robert Puers, Livio Baldi, and Marcel Van de Voorde 613 Index 617 XXIV Contents