

Wiley Classics Library

The **Wiley Classics Library** consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.

Currently available in the Series:

T. W. Anderson

The Statistical Analysis of Time Series

T. S. Arthanari & Yadolah Dodge

Mathematical Programming in Statistics

Emil Artin

Geometric Algebra

Norman T. J. Bailey

The Elements of Stochastic Processes
with Applications to the Natural Sciences

Robert G. Bartle

The Elements of Integration and
Lebesgue Measure

George E. P. Box & Norman R. Draper

Evolutionary Operation: A Statistical Method for
Process Improvement

George E. P. Box & George C. Tiao

Bayesian Inference in Statistical Analysis

R. W. Carter

Finite Groups of Lie Type: Conjugacy Classes
and Complex Characters

R. W. Carter

Simple Groups of Lie Type

William G. Cochran & Gertrude M. Cox

Experimental Designs, Second Edition

Richard Courant

Differential and Integral Calculus, Volume I

Richard Courant

Differential and Integral Calculus, Volume II

Richard Courant & D. Hilbert

Methods of Mathematical Physics, Volume I

Richard Courant & D. Hilbert

Methods of Mathematical Physics, Volume II

D. R. Cox

Planning of Experiments

Harold S. M. Coxeter

Introduction to Geometry, Second Edition

Charles W. Curtis & Irving Reiner

Representation Theory of Finite Groups and
Associative Algebras

Charles W. Curtis & Irving Reiner

Methods of Representation Theory
with Applications to Finite Groups
and Orders, Volume I

Charles W. Curtis & Irving Reiner

Methods of Representation Theory
with Applications to Finite Groups
and Orders, Volume II

Cuthbert Daniel

Fitting Equations to Data: Computer Analysis of
Multifactor Data, Second Edition

Bruno de Finetti

Theory of Probability, Volume I

Bruno de Finetti

Theory of Probability, Volume 2

Morris H. DeGroot

Optimal Statistical Decisions

W. Edwards Deming

Sample Design in Business Research

Amos de Shalit & Herman Feshbach

Theoretical Nuclear Physics, Volume 1—
Nuclear Structure

(continued on inside back cover)

ISBN 978-0-471-65574-9

90000

9 780471 655749

1. INTRODUCTION	
1.1. Overview	1
Nonresponse in Surveys	1
Multiple Imputation	2
Can Multiple Imputation Be Used in Nonsurvey Problems?	3
Background	4
1.2. Examples of Surveys with Nonresponse	4
Example 1.1. Educational Testing Service's Sample Survey of Schools	4
Example 1.2. Current Population Survey and Missing Incomes	5
Example 1.3. Census Public-Use Data Bases and Missing Occupation Codes	6
Example 1.4. Normative Aging Study of Drinking	7
1.3. Properly Handling Nonresponse	7
Handling Nonresponse in Example 1.1	7
Handling Nonresponse in Example 1.2	9
Handling Nonresponse in Example 1.3	10

Handling Nonresponse in Example 1.4	10
The Variety of Objectives When Handling Nonresponse	11
1.4. Single Imputation	11
Imputation Allows Standard Complete-Data Methods of Analysis to Be Used	11
Imputation Can Incorporate Data Collector's Knowledge	12
The Problem with One Imputation for Each Missing Value	12
Example 1.5. Best-Prediction Imputation in a Simple Random Sample	13
Example 1.6. Drawing Imputations from a Distribution (Example 1.5 continued)	14
1.5. Multiple Imputation	15
Advantages of Multiple Imputation	15
The General Need to Display Sensitivity to Models of Nonresponse	16
Disadvantages of Multiple Imputation	17
1.6. Numerical Example Using Multiple Imputation	19
Analyzing This Multiply-Imputed Data Set	19
Creating This Multiply-Imputed Data Set	22
1.7. Guidance for the Reader	22
Problems	23
2. STATISTICAL BACKGROUND	27
2.1. Introduction	27
Random Indexing of Units	27
2.2. Variables in the Finite Population	28
Covariates X	28
Outcome Variables Y	29
Indicator for Inclusion in the Survey I	29
Indicator for Response in the Survey R	30
Stable Response	30
Surveys with Stages of Sampling	31

2.3. Probability Distributions and Related Calculations	31
Conditional Probability Distributions	32
Probability Specifications Are Symmetric in Unit Indices	32
Bayes's Theorem	33
Finding Means and Variances from Conditional Means and Variances	33
2.4. Probability Specifications for Indicator Variables	35
Sampling Mechanisms	35
Examples of Unconfounded Probability Sampling Mechanisms	37
Examples of Confounded and Nonprobability Sampling Mechanisms	38
Response Mechanisms	38
2.5. Probability Specifications for (X, Y)	39
de Finetti's Theorem	40
Some Intuition	40
Example 2.1. A Simple Normal Model for Y_i	40
Lemma 2.1. Distributions Relevant to Example 2.1	41
Example 2.2. A Generalization of Example 2.1	42
Example 2.3. An Application of Example 2.2: The Bayesian Bootstrap	44
Example 2.4. Y_i Approximately Proportional to X_i	46
2.6. Bayesian Inference for a Population Quantity	48
Notation	48
The Posterior Distribution for $Q(X, Y)$	48
Relating the Posterior Distribution of Q to the Posterior Distribution of Y_{nob}	49
Ignorable Sampling Mechanisms	50
Result 2.1. An Equivalent Definition for Ignorable Sampling Mechanisms	50
Ignorable Response Mechanisms	51
Result 2.2. Ignorability of the Response Mechanism When the Sampling Mechanism Is Ignorable	51
Result 2.3. The Practical Importance of Ignorable Mechanisms	52

Relating Ignorable Sampling and Response Mechanisms to Standard Terminology in the Literature on Parametric Inference from Incomplete Data	53
2.7. Interval Estimation	54
General Interval Estimates	55
Bayesian Posterior Coverage	55
Example 2.5. Interval Estimation in the Context of Example 2.1	56
Fixed-Response Randomization-Based Coverage	56
Random-Response Randomization-Based Coverage	58
Nominal versus Actual Coverage of Intervals	58
2.8. Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates	59
Highest Posterior Density Regions	59
Significance Levels— <i>p</i> -Values	60
Point Estimates	62
2.9. Evaluating the Performance of Procedures	62
A Protocol for Evaluating Procedures	63
Result 2.4. The Average Coverages Are All Equal to the Probability That C Includes Q	64
Further Comments on Calibration	64
2.10. Similarity of Bayesian and Randomization-Based Inferences in Many Practical Cases	65
Standard Asymptotic Results Concerning Bayesian Procedures	66
Extensions of These Standard Results	66
Practical Conclusions of Asymptotic Results	67
Relevance to the Multiple-Imputation Approach to Nonresponse	67
Problems	68
3. UNDERLYING BAYESIAN THEORY	75
3.1. Introduction and Summary of Repeated-Imputation Inferences	75
Notation	75

Combining the Repeated Complete-Data Estimates and Variances	76
Scalar Q	77
Significance Levels Based on the Combined Estimates and Variances	77
Significance Levels Based on Repeated Complete-Data Significance Levels	78
Example 3.1. Inference for Regression Coefficients	79
3.2. Key Results for Analysis When the Multiple Imputations Are Repeated Draws from the Posterior Distribution of the Missing Values	81
Result 3.1. Averaging the Completed-Data Posterior Distribution of Q over the Posterior Distribution of Y_{mis} to Obtain the Actual Posterior Distribution of Q	82
Example 3.2. The Normal Model Continued	82
The Posterior Cumulative Distribution Function of Q	83
Result 3.2. Posterior Mean and Variance of Q	84
Simulating the Posterior Mean and Variance of Q	85
Missing and Observed Information with Infinite m	85
Inference for Q from Repeated Completed-Data Means and Variances	86
Example 3.3. Example 3.2 Continued	87
3.3. Inference for Scalar Estimands from a Modest Number of Repeated Completed-Data Means and Variances	87
The Plan of Attack	88
The Sampling Distribution of S_m Given (X, Y_{obs}, R_{inc})	88
The Conditional Distribution of $(\bar{Q}_\infty, \bar{U}_\infty)$ Given S_m and B_∞	89
The Conditional Distribution of Q Given S_m and B_∞	89
The Conditional Distribution of B_∞ Given S_m	90
The Conditional Distribution of $\bar{U}_m + (1 + m^{-1})B_\infty$ Given S_m	90
Approximation 3.1 Relevant to the Behrens-Fisher Distribution	91
Applying Approximation 3.1 to Obtain (3.3.9)	92
The Approximating t Reference Distribution for Scalar Q	92

Example 3.4. Example 3.3 Continued	92
Fraction of Information Missing Due to Nonresponse	93
3.4. Significance Levels for Multicomponent Estimands from a Modest Number of Repeated Completed-Data Means and Variance-Covariance Matrices	94
The Conditional Distribution of Q Given S_m and B_∞	94
The Bayesian p -Value for a Null Value Q_0 Given S_m : General Expression	95
The Bayesian p -Value Given S_m with Scalar Q	95
The Bayesian p -Value Given S_m with Scalar Q —Closed-Form Approximation	96
p -Values with B_∞ <i>a Priori</i> Proportional to T_∞	96
p -Values with B_∞ <i>a Priori</i> Proportional to T_∞ —Closed-Form Approximation	97
p -Values When B_∞ Is Not <i>a Priori</i> Proportional to \bar{U}_∞	98
3.5. Significance Levels from Repeated Completed-Data Significance Levels	99
A New Test Statistic	99
The Asymptotic Equivalence of \tilde{D}_m and \hat{D}_m —Proof	100
Integrating over r_m to Obtain a Significance Level from Repeated Completed-Data Significance Levels	100
3.6. Relating the Completed-Data and Complete-Data Posterior Distributions When the Sampling Mechanism Is Ignorable	102
Result 3.3. The Completed-Data and Complete-Data Posterior Distributions Are Equal When Sampling and Response Mechanisms Are Ignorable	103
Using i.i.d. Modeling	104
Result 3.4. The Equality of Completed-Data and Complete-Data Posterior Distributions When Using i.i.d. Models	104
Example 3.5. A Situation in Which Conditional on θ_{XY} , the Completed-Data and Complete-Data Posterior Distributions of Q Are Equal—Condition (3.6.7)	105
Example 3.6. Cases in Which Condition (3.6.7) Nearly Holds	105

Example 3.7. Situations in Which the Completed-Data and Complete-Data Posterior Distributions of θ_{XY} Are Equal—Condition (3.6.8)	106
Example 3.8. A Simple Case Illustrating the Large-Sample Equivalence of Completed-Data and Complete-Data Posterior Distributions of θ_{XY}	106
The General Use of Complete-Data Statistics	106
Problems	107
4. RANDOMIZATION-BASED EVALUATIONS	113
4.1. Introduction	113
Major Conclusions	113
Large-Sample Relative Efficiency of Point Estimates	114
Large-Sample Coverage of <i>t</i> -Based Interval Estimates	114
Outline of Chapter	115
4.2. General Conditions for the Randomization-Validity of Infinite-<i>m</i> Repeated-Imputation Inferences	116
Complications in Practice	117
More General Conditions for Randomization-Validity	117
Definition: Proper Multiple-Imputation Methods	118
Result 4.1. If the Complete-Data Inference Is Randomization-Valid and the Multiple-Imputation Procedure Is Proper, Then the Infinite- <i>m</i> Repeated-Imputation Inference Is Randomization-Valid under the Posited Response Mechanism	119
4.3. Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse	120
Example 4.1. Simple Random Multiple Imputation	120
Why Variability Is Underestimated Using the Multiple-Imputation Hot-Deck	122
Example 4.2. Fully Normal Bayesian Repeated Imputation	123
Example 4.3. A Nonnormal Bayesian Imputation Procedure That Is Proper for the Standard Inference—The Bayesian Bootstrap	123
Example 4.4. An Approximately Bayesian yet Proper Imputation Method—The Approximate Bayesian Bootstrap	124

Example 4.5. The Mean and Variance Adjusted Hot-Deck	124
4.4. Further Discussion of Proper Imputation Methods	125
Conclusion 4.1. Approximate Repetitions from a Bayesian Model Tend to Be Proper	125
The Heuristic Argument	126
Messages of Conclusion 4.1	126
The Importance of Drawing Repeated Imputations Appropriate for the Posited Response Mechanism	127
The Role of the Complete-Data Statistics in Determining Whether a Repeated Imputation Method Is Proper	127
4.5. The Asymptotic Distribution of $(\bar{Q}_m, \bar{U}_m, B_m)$ for Proper Imputation Methods	128
Validity of the Asymptotic Sampling Distribution of S_m	128
The Distribution of $(\bar{Q}_m, \bar{U}_m, B_m)$ Given (X, Y) for Scalar Q	129
Random-Response Randomization-Based Justification for the t Reference Distribution	130
Extension of Results to Multicomponent Q	131
Asymptotic Efficiency of \bar{Q}_m Relative to \bar{Q}_∞	131
4.6. Evaluations of Finite-m Inferences with Scalar Estimands	132
Small-Sample Efficiencies of Asymptotically Proper Imputation Methods from Examples 4.2–4.5	132
Large-Sample Coverages of Interval Estimates Using a t Reference Distribution and Proper Imputation Methods	134
Small-Sample Monte Carlo Coverages of Asymptotically Proper Imputation Methods from Examples 4.2–4.5	135
Evaluation of Significance Levels	135
4.7. Evaluation of Significance Levels from the Moment-Based Statistics D_m and \tilde{D}_m with Multicomponent Estimands	137
The Level of a Significance Testing Procedure	138
The Level of D_m —Analysis for Proper Imputation Methods and Large Samples	138
The Level of D_m —Numerical Results	139

The Level of \tilde{D}_m —Analysis	139
The Effect of Unequal Fractions of Missing Information on \tilde{D}_m	141
Some Numerical Results for \tilde{D}_m with $k' = (k + 1)v/2$	141
4.8. Evaluation of Significance Levels Based on Repeated Significance Levels	144
The Statistic $\hat{\tilde{D}}_m$	144
The Asymptotic Sampling Distribution of \bar{d}_m and s_d^2	144
Some Numerical Results for $\hat{\tilde{D}}_m$	145
The Superiority of Multiple Imputation Significance Levels	145
Problems	148
5. PROCEDURES WITH IGNORABLE NONRESPONSE	154
5.1. Introduction	154
No Direct Evidence to Contradict Ignorable Nonresponse	155
Adjust for All Observed Differences and Assume Unobserved Residual Differences Are Random	155
Univariate Y_i and Many Respondents at Each Distinct Value of X_i That Occurs Among Nonrespondents	156
The More Common Situation, Even with Univariate Y_i	156
A Popular Implicit Model—The Census Bureau's Hot-Deck	157
Metric-Matching Hot-Deck Methods	158
Least-Squares Regression	159
Outline of Chapter	159
5.2. Creating Imputed Values under an Explicit Model	160
The Modeling Task	160
The Imputation Task	161
Result 5.1. The Imputation Task with Ignorable Nonresponse	162
The Estimation Task	163
Result 5.2. The Estimation Task with Ignorable Nonresponse When $\theta_{Y X}$ and θ_X Are <i>a Priori</i> Independent	164

Result 5.3. The Estimation Task with Ignorable Nonresponse, $\theta_{Y X}$ and θ_X <i>a Priori</i> Independent, and Univariate Y_i	165
A Simplified Notation	165
5.3. Some Explicit Imputation Models with Univariate Y_i and Covariates	166
Example 5.1. Normal Linear Regression Model with Univariate Y_i	166
Example 5.2. Adding a Hot-Deck Component to the Normal Linear Regression Imputation Model	168
Extending the Normal Linear Regression Model	168
Example 5.3. A Logistic Regression Imputation Model for Dichotomous Y_i	169
5.4. Monotone Patterns of Missingness in Multivariate Y_i	170
Monotone Missingness in Y —Definition	171
The General Monotone Pattern—Description of General Techniques	171
Example 5.4. Bivariate Y_i and an Implicit Imputation Model	172
Example 5.5. Bivariate Y_i with an Explicit Normal Linear Regression Model	173
Monotone-Distinct Structure	174
Result 5.4. The Estimation Task with a Monotone-Distinct Structure	175
Result 5.5. The Imputation Task with a Monotone-Distinct Structure	177
5.5. Missing Social Security Benefits in the Current Population Survey	178
The CPS-IRS-SSA Exact Match File	178
The Reduced Data Base	179
The Modeling Task	179
The Estimation Task	180
The Imputation Task	181
Results Concerning Absolute Accuracies of Prediction	181
Inferences for the Average OASDI Benefits for the Nonrespondents in the Sample	184
Results on Inferences for Population Quantities	185

5.6. Beyond Monotone Missingness	186
Two Outcomes Never Jointly Observed—Statistical Matching of Files	186
Example 5.6. Two Normal Outcomes Never Jointly Observed	187
Problems Arising with Nonmonotone Patterns	188
Discarding Data to Obtain a Monotone Pattern	189
Assuming Conditional Independence Among Blocks of Variables to Create Independent Monotone Patterns	190
Using Computationally Convenient Explicit Models	191
Iteratively Using Methods for Monotone Patterns	192
The Sampling/Importance Resampling Algorithm	192
Some Details of SIR	193
Example 5.7. An Illustrative Application of SIR	194
Problems	195
6. PROCEDURES WITH NONIGNORABLE NONRESPONSE	202
6.1. Introduction	202
Displaying Sensitivity to Models for Nonresponse	202
The Need to Use Easily Communicated Models	203
Transformations to Create Nonignorable Imputed Values from Ignorable Imputed Values	203
Other Simple Methods for Creating Nonignorable Imputed Values Using Ignorable Imputation Models	203
Essential Statistical Issues and Outline of Chapter	204
6.2. Nonignorable Nonresponse with Univariate Y_i and No X_i	205
The Modeling Task	205
The Imputation Task	206
The Estimation Task	206
Two Basic Approaches to the Modeling Task	207
Example 6.1. The Simple Normal Mixture Model	207
Example 6.2. The Simple Normal Selection Model	209
6.3. Formal Tasks with Nonignorable Nonresponse	210
The Modeling Task—Notation	210

Two General Approaches to the Modeling Task	211
Similarities with Ignorable Case	211
The Imputation Task	212
Result 6.1. The Imputation Task with Nonignorable Nonresponse	212
Result 6.2. The Imputation Task with Nonignorable Nonresponse When Each Unit Is Either Included in or Excluded from the Survey	212
The Estimation Task	213
Result 6.3. The Estimation Task with Nonignorable Nonresponse When $\theta_{YR X}$ Is <i>a Priori</i> Independent of θ_X	213
Result 6.4. The Estimation Task with Nonignorable Nonresponse When $\theta_{Y XR}$ Is <i>a Priori</i> Independent of $(\theta_{R X}, \theta_X)$ and Each Unit Is Either Included in or Excluded from the Survey	213
Result 6.5. The Imputation and Estimation Tasks with Nonignorable Nonresponse and Univariate Y_i Monotone Missingness	214
Result 6.6. The Estimation and Imputation Tasks with a Monotone-Distinct Structure and a Mixture Model for Nonignorable Nonresponse	214
Selection Modeling and Monotone Missingness	215
6.4. Illustrating Mixture Modeling Using Educational Testing Service Data	215
The Data Base	216
The Modeling Task	216
Clarification of Prior Distribution Relating Nonrespondent and Respondent Parameters	217
Comments on Assumptions	218
The Estimation Task	219
The Imputation Task	219
Analysis of Multiply-Imputed Data	221
6.5. Illustrating Selection Modeling Using CPS Data	222
The Data Base	223
The Modeling Task	224
The Estimation Task	225
The Imputation Task	225

Accuracy of Results for Single Imputation Methods	226
Estimates and Standard Errors for Average $\log(\text{wage})$ for Nonrespondents in the Sample	227
Inferences for Population Mean $\log(\text{wage})$	229
6.6. Extensions to Surveys with Follow-Ups	229
Ignorable Nonresponse	231
Nonignorable Nonresponse with 100% Follow-Up Response	231
Example 6.3. 100% Follow-Up Response in a Simple Random Sample of Y_i	232
Ignorable Hard-Core Nonresponse Among Follow-Ups	233
Nonignorable Hard-Core Nonresponse Among Follow-Ups	233
Waves of Follow-Ups	234
6.7. Follow-Up Response in a Survey of Drinking Behavior Among Men of Retirement Age	234
The Data Base	235
The Modeling Task	235
The Estimation Task	235
The Imputation Task	235
Inference for the Effect of Retirement Status on Drinking Behavior	239
Problems	240
REFERENCES	244
AUTHOR INDEX	251
SUBJECT INDEX	253
APPENDIX I: Report Written for the Social Security Administration in 1977	259
APPENDIX II: Report Written for the Census Bureau in 1983	268