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embryogenesis 483

Intercellular signaling processes play key roles in 
guiding position-dependent development 484 

Embryo development features regulate communication 
between cells 484

The analysis of mutants identifies genes for 
signaling processes that are essential ibr embryo 
organization 485

Auxin functions as a mobile chemical signal during 
embryogenesis 487

Plant polarity is maintained by polar auxin streams 487 
Auxin transport is regulated by multiple 

mechanisms 489
The GNOM protein establishes a polar distribution of 

PIN auxin efflux proteins 491 
MONOPTEROS encodes a transcription factor that is 

activated by auxin 492
Radial patterning guides formation of tissue layers 492 
The origin of epidermis: a boundary and interface at the 

edge of the radial axis 492 
Procambiai precusors for the vascular stele lie at the 

center of the radial axis 493 
The differentiation of cortical and endodermal cells 

involves the intercellular movement of a transcription 
factor 494

Meristematic Tissues: Foundations for 
Indeterminate Growth 495

The root and shoot apical meristems use similar 
strategies to enable indeterminate growth 495

The Root Apical Meristem 496
The root tip has four developmental zones 497 
The origin of different root tissues can be traced to 

specific initial cells 497 
Cell ablation experiments implicate directional 

signaling processes in determination of cell 
identity 499

Auxin contributes to the formation and maintenance of 
the RAM 499

Responses to auxin are mediated by several distinct 
families of transcription factors 499



Cytokinin is required for normal root development 500
The Shoot Apical Meristem 500

The shoot apical meristem has distinct zones and 
layers 502

Shoot tissues are derived from several discrete sets of 
apical initials 502

Factors involved in auxin movement and responses 
influence SAM formation 503

Embryonic SAM formation requires the coordinated 
expression of transcription factors 503

A combination of positive and negative interactions 
determines apical meristem size 505

KNOX class homeodomain genes help maintain the 
proliferative ability of the SAM through regulation of 
cytokinin and GA levels 506

Localized zones of auxin accumulation promote leaf 
initiation 507

The Vascular Cambium 508
The maintenance of undetermined initials in various 

meristem types depends on similar mechanisms 508

CHAPTER 18
Seed Dormancy, Germination, 
and Seedling Establishment 513
Seed Structure 514

Seed anatomy varies widely among different plant 
groups 514

Seed Dormancy 515
Dormancy can be imposed on the embryo by the 

surrounding tissues 516
Embryo dormancy may be caused by physiological or 

morphological factors 516
Non-dormant seeds can exhibit vivipary and precocious 

germination 516
The ABA:GA ratio is the primary determinant of seed 

dormancy 517
Release from Dormancy 519

Light is an important signal that breaks dormancy in 
small seeds 519

Some seeds require either chilling or after-ripening to 
break dormancy 519

Seed dormancy can by broken by various chemical 
compounds 520

Seed Germination 520
Germination can be divided into three phases 

corresponding to the phases of water uptake 520
Mobilization of Stored Reserves 522
The cereal aleurone layer is a specialized digestive 

tissue surrounding the starchy endosperm 522

Gibberellins enhance the transcription of a-amylase 
mRNA 522

The gibberellin receptor, GID1, promotes the 
degradation of negative regulators of the gibberellin 
response 523

GA-MYB is a positive regulator of a-amylase 
transcription 524

DELLA repressor proteins are rapidly degraded 524 
ABA inhibits gibberellin-induced enzyme 

production 524
Seedling Growth and Establishment 526
Auxin promotes growth in stems and coleoptiles, while 

inhibiting growth in roots 526 
The outer tissues of eudicot stems are the targets of 

auxin action 526
The minimum lag time for auxin-induced elongation is 

10 minutes 526
Auxin-induced proton extrusion induces cell wall creep 

and cell elongation 528
Tropisms: Growth in Response to Directional 

Stimuli 528
Gravitropism involves the lateral redistribution of 

auxin 528
Polar auxin transport requires energy and is gravity 

independent 529
According to the starch-statolith hypothesis, 

specialized amyloplasts serve as gravity sensors in 
root caps 530

Auxin movements in the root are regulated by specific 
transporters 532

The gravitropic stimulus perturbs the symmetric 
movement of auxin from the root tip 533 

Gravity perception in eudicot stems and stemlike 
organs occurs in the starch sheath 533 

Gravity sensing may involve pH and calcium ions (Ca2*) 
as second messengers 533

Phototropism 535
Phototropism is mediated by the lateral redistribution 

of auxin 535
Phototropism occurs in a series of posttranslational 

events 536
Photomorphogenesis 537

Gibberellins and brassinosteroids both suppress 
photomorphogenesis in the dark 538 

Hook opening is regulated by phytochrome and 
auxin 539

Ethylene induces lateral cell expansion 539
Shade Avoidance 540

Phytochrome enables plants to adapt to changes in light 
quality 540

Decreasing the R:FR ratio causes elongation in sun 
plants 540



Reducing shade avoidance responses can improve crop 
yields 542

Vascular Tissue Differentiation 542
Auxin and cytokinin are required for normal vascular 

development 543
Zinnia suspension-cultured cells can be induced to 

undergo xylogenesis 544 
Xylogenesis involves chemical signaling between 

neighboring cells 544
Root Growth and Differentiation 545
Root epidermal development follows three basic 

patterns 546
Auxin and other hormones regulate root hair 

development 546
Lateral root formation and emergence depend on 

endogenous and exogenous signals 547 
Regions of lateral root emergence correspond with 

regions of auxin maxima 548 
Lateral roots and shoots have gravitropic setpoint 

angles 549

CHAPTER 19 
Vegetative Growth 
and Organogenesis 553
Leaf Development 553
The Establishment of Leaf Polarity 554

Hormonal signals play key roles in regulating leaf 
primordia emergence 555

A signal from the SAM initiates adaxial-abaxial 
polarity 555

ARP genes promote adaxial identity and repress the 
KNOX! gene 556

Adaxial leaf development requires HD-ZIP III 
transcription factors 556

The expression of HD-ZIP III genes is antagonized by 
miR166 in abaxial regions of the leaf 558

Antagonism between KANADI and HD-ZIP III is a key 
determinant of adaxial-abaxial leaf polarity 558 

Interactions between adaxial and abaxial tissues are 
required for blade outgrowth 558 

Blade outgrowth is auxin dependent and regulated by 
the YABBY and WOX genes 558

Leaf proximal-distal polarity also depends on specific 
gene expression 559

In compound leaves, de-repression of the KNOX1 gene 
promotes leaflet formation 559

Differentiation of Epidermal Cell Types 561
Guard cell fate is ultimately determined by a specialized 

epidermal lineage 562
Two groups of bHLH transcription factors govern 

stomatal cell fate transitions 563

Peptide signals regulate stomatal patterning by 
interacting with cell surface receptors 563 

Genetic screens have led to the identification of positive 
and negative regulators of trichome initiation 563 

GLABRA2 acts downstream of the GL1-GL3-TTG1 
complex to promote trichome formation 565 

Jasmonic acid regulates Arabidopsis leaf trichome 
development 565

Venation Patterns in Leaves 565
The primary leaf vein is initiated discontinuously from 

the preexisting vascular system 566 
Auxin canalization initiates development of the leaf 

trace 566
Basipetal auxin transport from the LI layer of the leaf 

primordium initiates development of the leaf trace 
procambium 568

The existing vasculature guides the growth of the leaf 
trace 568

Higher-order leaf veins differentiate in a predictable 
hierarchical order 569

Auxin canalization regulates higher-order vein 
formation 570

Localized auxin biosynthesis is critical for higher-order 
venation patterns 571

Shoot Branching and Architecture 572
Axillary meristem initiation involves many of the same 

genes as leaf initiation and lamina outgrowth 573 
Auxin, cytokinins, and strigolactones regulate axillary 

bud outgrowth 573
Auxin from the shoot tip maintains apical 

dominance 574
Strigolactones act locally to repress axillary bud 

growth 574
Cytokinins antagonize the effects of strigolactones 576 
The initial signal for axillary bud growth may be an 

increase in sucrose availability to the bud 577 
Integration of environmental and hormonal branching 

signals is required for plant fitness 577 
Axillary bud dormancy in woody plants is affected by 

season, position, and age factors 578
Root System Architecture 579

Plants can modify their root system architecture to 
optimize water and nutrient uptake 579 

Monocots and eudicots differ in their root system 
architecture 580

Root system architecture changes in response to 
phosphorous deficiencies 580 

Root system architecture responses to phosphorus 
deficiency involve both local and systemic regulatory 
networks 582

Mycorrhizal networks augment root system 
architecture in all major terrestrial ecosystems 583



Secondary Growth 583
The vascular cambium and cork cambium are the 

secondary meristems where secondary growth 
originates 584

Secondary growth evolved early in the evolution of land 
plants 585

Secondary growth from the vascular cambium gives 
rise to secondary xylem and phloem 585 

Phytohormones have important roles in regulating 
vascular cambium activity and differentiation of 
secondary xylem and phloem 585 

Genes involved in stem cell maintenance, proliferation, 
and differentiation regulate secondary growth 586 

Environmental factors influence vascular cambium 
activity and wood properties 587

CHAPTER 20
The Control of Flowering
and Floral Development 591
Floral Evocation: Integrating Environmental 

Cues 592
The Shoot Apex and Phase Changes 592

Plant development has three phases 592 
Juvenile tissues are produced first and are located at the 

base of the shoot 592
Phase changes can be influenced by nutrients, 

gibberellins, and other signals 593
Circadian Rhythms: The Clock Within 594

Circadian rhythms exhibit characteristic features 595 
Phase shifting adjusts circadian rhythms to different 

day-night cycles 596
Phytochromes and cryptochromes entrain the 

clock 596
Photoperiodism: Monitoring Day Length 597

Plants can be classified according to their photoperiodic 
responses 597

The leaf is the site of perception of the photoperiodic 
signal 599

Plants monitor day length by measuring the length of 
the night 599

Night breaks can cancel the effect of the dark 
period 599

Photoperiodic timekeeping during the night depends 
on a circadian clock 599

The coincidence model is based on oscillating light 
sensitivity 600

The coincidence of CONSTANS expression and light 
promotes flowering in LDPs 601 

SDPs use a coincidence mechanism to inhibit flowering 
in long days 603

Phytochrome is the primary photoreceptor in 
photoperiodism 603

A blue-light photoreceptor regulates flowering in some 
LDPs 604

Vernalization: Promoting Flowering with 
Cold 605

Vernalization results in competence to flower at the 
shoot apical meristem 605 

Vernalization can involve epigenetic changes in gene 
expression 606

A range of vernalization pathways may have 
evolved 607

Long-Distance Signaling Involved in 
Flowering 608

Grafting studies provided the first evidence for a 
transmissible floral stimulus 608 

Florigen is translocated in the phloem 609
The Identification of Florigen 610

The Arabidopsis protein FLOWERING LOCUS T (FT) 
is florigen 610

Gibberellins and ethylene can induce flowering 610 
The transition to flowering involves multiple factors and 

pathways 612
Floral Meristems and Floral Organ 

Development 612
The shoot apical meristem in Arabidopsis changes with 

development 613
The four different types of floral organs are initiated as 

separate whorls 613
Two major categories of genes regulate floral 

development 614
Floral meristem identity genes regulate meristem 

function 614
Homeotic mutations led to the identification of floral 

organ identity genes 616
The ABC model partially explains the determination of 

floral organ identity 616
Arabidopsis Class E genes are required for the activities 

of the A, B, and C genes 618 
According to the Quartet Model, floral organ identity 

is regulated by tetrameric complexes of the ABCE 
proteins 618

Class D genes are required for ovule formation 619 
Floral asymmetry in flowers is regulated by gene 

expression 620



CHAPTER 21
Gametophytes, Pollination,
Seeds, and Fruits 625
Development of the Male and Female 

Gametophyte Generations 625 
Formation of Male Gametophytes in the 

Stamen 626
Pollen grain formation occurs in two successive 

stages 627
The multilayered pollen cell wall is surprisingly 

complex 628
Female Gametophyte Development in the 

Ovule 630
The Arabidopsis gynoecium is an important model 

system for studying ovule development 630 
The vast majority of angiosperms exhibit Polygonum- 

type embryo sac development 630 
Functional megaspores undergo a series of free nuclear 

mitotic divisions followed by cellularization 631 
Embryo sac development involves hormonal 

signaling between sporophytic and gametophytic 
generations 632

Pollination and Fertilization in Flowering 
Plants 632

Delivery of sperm cells to the female gametophyte by 
the pollen tube occurs in six phases 633 

Adhesion and hydration of a pollen grain on a 
compatible flower depend on recognition between 
pollen and stigma surfaces 634 

Ca2*-triggered polarization of the pollen grain precedes 
tube formation 635 

Pollen tubes grow by tip growth 635 
Receptor-like kinases are thought to regulate the ROP1 

GTPase switch, a master regulator of tip growth 635 
Pollen tube tip growth in the pistil is directed by both 

physical and chemical cues 637 
Style tissue conditions the pollen tube to respond to 

attractants produced by the synergids of the embryo 
sac 637

Double fertilization occurs in three distinct stages 638
Selfing versus Outcrossing 639

Hermaphroditic and monoecious species have evolved 
floral features to ensure outcrossing 639 

Cytoplasmic male sterility (CMS) occurs in the wild and 
is of great utility in agriculture 640 

Self-incompatibility (SI) is the primary mechanism that 
enforces outcrossing in angiosperms 640 

The Brassicaceae sporophytic SI system requires two 
S-locus genes 641

Gametophytic self-incompatibility (GSI) is mediated by 
cytotoxic S-RNases and F-box proteins 642

Apomixis: Asexual Reproduction by Seed 643
Endosperm Development 643

Cellularization of coenocytic endosperm in Arabidopsis 
progresses from the micropylar to the chalazal 
region 645

Cellularization of the coenocytic endosperm of cereals 
progresses centripetally 646

Endosperm development and embryogenesis can occur 
autonomously 646

Many of the genes that control endosperm development 
are maternally expressed genes 647 

The FIS proteins are members of a Polycomb 
repressive complex (PRC2) that represses endosperm 
development 647

Cells of the starchy endosperm and aleurone layer 
follow divergent developmental pathways 649 

Two genes, DEK1 and CR4, have been implicated in 
aleurone layer differentiation 649

Seed Coat Development 650
Seed coat development appears to be regulated by the 

endosperm 650
Seed Maturation and Desiccation Tolerance 652

Seed filling and desiccation tolerance phases overlap in 
most species 652

The acquisition of desiccation tolerance involves many 
metabolic pathways 653

During the acquisition of desiccation tolerance, the cells 
of the embryo acquire a glassy state 653 

LEA proteins and nonreducing sugars have been 
implicated in seed desiccation tolerance 653 

Specific LEA proteins have been implicated in 
desiccation tolerance in Medicago truncatula 653 

Abscisic acid plays a key role in seed maturation 654 
Coat-imposed dormancy is correlated with long-term 

seed-viability 654
Fruit Development and Ripening 655

Arabidopsis and tomato are model systems for the 
study of fruit development 655 

Fleshy fruits undergo ripening 657 
Ripening involves changes in the color of fruit 657 
Fruit softening involves the coordinated action of many 

cell wall-degrading enzymes 658 
Taste and flavor reflect changes in acids, sugars, and 

aroma compounds 658
The causal link between ethylene and ripening 

was demonstrated in transgenic and mutant 
tomatoes 658

Climacteric and non-climacteric fruit differ in their 
ethylene responses 658

The ripening process is transcriptionally regulated 660



Angiosperms share a range of common molecular 
mechanisms controlling fruit development and 
ripening 660

Fruit ripening is under epigenetic control 660
A mechanistic understanding of the ripening process 

has commercial applications 661

CHAPTER 22 
Plant Senescence 
and Cell Death 665
Programmed Cell Death and Autolysis 666

PCD during normal development differs from that of 
the hypersensitive response 668

The autophagy pathway captures and degrades cellular 
constituents within lytic compartments 669

A subset of the autophagy-related genes controls the 
formation of the autophagosome 669

The autophagy pathway plays a dual role in plant 
development 671

The Leaf Senescence Syndrome 671
The developmental age of a leaf may differ from its 

chronological age 672
Leaf senescence may be sequential, seasonal, or stress- 

induced 672
Developmental leaf senescence consists of three distinct 

phases 673
The earliest cellular changes during leaf senescence 

occur in the chloroplast 675
The autolysis of chloroplast proteins occurs in multiple 

compartments 675
The STAY-GREEN (SGR) protein is required for 

both LHCPII protein recycling and chlorophyll 
catabolism 676

Leaf senescence is preceded by a massive 
reprogramming of gene expression 677

Leaf Senescence: The Regulatory Network 678
The NAC and WRKYgene families are the most 

abundant transcription factors regulating leaf 
senescence 678

ROS serve as internal signaling agents in leaf 
senescence 680

Sugars accumulate during leaf senescence and may 
serve as a signal 681

Plant hormones interact in the regulation of leaf 
senescence 681

Leaf Abscission 684
The timing of leaf abscission is regulated by the 

interaction of ethylene and auxin 685
Whole Plant Senescence 686

Angiosperm life cycles may be annual, biennial, or 
perennial 687

Whole plant senescence differs from aging in 
animals 688

The determinacy of shoot apical meristems is 
developmentally regulated 688 

Nutrient or hormonal redistribution may trigger 
senescence in monocarpic plants 689 

The rate of carbon accumulation in trees increases 
continuously with tree size 689

CHAPTER 23 
Biotic Interactions 693
Beneficial Interactions between Plants and 

Microorganisms 695
Nod factors are recognized by the Nod factor receptor 

(NFR) in legumes 695
Arbuscular mycorrhizal associations and nitrogen

fixing symbioses involve related signaling 
pathways 695

Rhizobacteria can increase nutrient availability, 
stimulate root branching, and protect against 
pathogens 697

Harmful Interactions between Plants, Pathogens, 
and Herbivores 697

Mechanical barriers provide a first line of defense 
against insect pests and pathogens 698 

Plant secondary metabolites can deter insect 
herbivores 700

Plants store constitutive toxic compounds in specialized 
structures 701

Plants often store defensive chemicals as nontoxic 
water-soluble sugar conjugates in the vacuole 703 

Constitutive levels of secondary compounds are higher 
in young developing leaves than in older tissues 705

Inducible Defense Responses to Insect 
Herbivores 705

Plants can recognize specific components of insect 
saliva 706

Modified fatty acids secreted by grasshoppers act as 
elicitors of jasmonic acid accumulation and ethylene 
emission 706

Phloem feeders activate defense signaling pathways 
similar to those activated by pathogen infections 707 

Calcium signaling and activation of the MAP kinase 
pathway are early events associated with insect 
herbivory 707

Jasmonic acid activates defense responses against insect 
herbivores 708

Jasmonic acid acts through a conserved ubiquitin ligase 
signaling mechanism 709 

Hormonal interactions contribute to plant-insect 
herbivore interactions 709



JA initiates the production of defense proteins that 
inhibit herbivore digestion 710 

Herbivore damage induces systemic defenses 710 
Glutamate receptor-like (GLR) genes are required 

for long-distance electrical signaling during 
herbivory 712

Herbivore-induced volatiles can repel herbivores and 
attract natural enemies 712 

Herbivore-induced volatiles can serve as long-distance 
signals between plants 713

Herbivore-induced volatiles can also act as systemic 
signals within a plant 714 

Defense responses to herbivores and pathogens are 
regulated by circadian rhythms 714 

Insects have evolved mechanisms to defeat plant 
defenses 715

Plant Defenses against Pathogens 715
Microbial pathogens have evolved various strategies to 

invade host plants 715
Pathogens produce effector molecules that aid in the 

colonization of their plant host cells 716 
Pathogen infection can give rise to molecular "danger 

signals" that are perceived by cell surface pattern 
recognition receptors (PRRs) 717 

R genes provide resistance to individual pathogens by 
recognizing strain-specific effectors 718

Exposure to elicitors induces a signal transduction 
cascade 719

Effectors released by phloem-feeding insects also 
activate NBS--LRR receptors 719 

The hypersensitive response is a common defense 
against pathogens 720

Phytoalexins with antimicrobial activity accumulate 
after pathogen attack 721 

A single encounter with a pathogen may increase 
resistance to future attacks 721 

The main components of the salicylic acid signaling 
pathway for SAR have been identified 723 

Interactions of plants with nonpathogenic bacteria can 
trigger systemic resistance through a process called 
induced systemic resistance (ISR) 723

Plant Defenses against Other Organisms 724
Some plant parasitic nematodes form specific 

associations through the formation of distinct feeding 
structures 724

Plants compete with other plants by secreting 
allelopathic secondary metabolites into the soil 725 

Some plants are biotrophic pathogens of other 
plants 726

CHAPTER 24 
Abiotic Stress 731
Defining Plant Stress 732

Physiological adjustment to abiotic stress involves 
trade-offs between vegetative and reproductive 
development 732

Acclimation and Adaptation 733
Adaptation to stress involves genetic modification over 

many generations 733
Acclimation allows plants to respond to environmental 

fluctuations 733
Environmental Factors and Their Biological 

Impacts on Plants 734
Water deficit decreases turgor pressure, increases ion 

toxicity and inhibits photosynthesis 735 
Salinity stress has both osmotic and cytotoxic 

effects 736
Light stress can occur when shade-adapted or shade- 

acclimated plants are subjected to full sunlight 736 
Temperature stress affects a broad spectrum of 

physiological processes 736 
Flooding results in anaerobic stress to the root 737 
During freezing stress, extracellular ice crystal 

formation causes cell dehydration 737 
Heavy metals can both mimic essential mineral 

nutrients and generate ROS 737 
Mineral nutrient deficiencies are a cause of stress 737 
Ozone and ultraviolet light generate ROS that cause 

lesions and induce PCD 737 
Combinations of abiotic stresses can induce unique 

signaling and metabolic pathways 738 
Sequential exposure to different abiotic stresses 

sometimes confers cross-protection 739
Stress-Sensing Mechanisms in Plants 739

Early-acting stress sensors provide the initial signal for 
the stress response 740

Signaling Pathways Activated in Response to 
Abiotic Stress 740

The signaling intermediates of many stress-response 
pathways can interact 740

Acclimation to stress involves transcriptional regulatory 
networks called regulons 743 

Chloroplast genes respond to high-intensity light by 
sending stress signals to the nucleus 744 

A self-propagating wave of ROS mediates systemic 
acquired acclimation 745 

Epigenetic mechanisms and small RNAs provide 
additional protection against stress 745



Hormonal interactions regulate normal development 
and abiotic stress responses 745

Developmental and Physiological Mechanisms 
That Protect Plants against Abiotic Stress 747

Plants adjust osmotically to drying soil by accumulating 
solutes 748

Submerged organs develop aerenchyma tissue in 
response to hypoxia 749

Antioxidants and ROS-scavenging pathways protect 
cells from oxidative stress 750 

Molecular chaperones and molecular shields protect 
proteins and membranes during abiotic stress 751 

Plants can alter their membrane lipids in response to 
temperature and other abiotic stresses 752 

Exclusion and internal tolerance mechanisms allow 
plants to cope with toxic ions 753

Phytochelatins and other chelators contribute to internal 
tolerance of toxic metal ions 754 

Plants use cryoprotectant molecules and antifreeze 
proteins to prevent ice crystal formation 754 

ABA signaling during water stress causes the massive 
efflux of K~ and anions from guard cells 755 

Plants can alter their morphology in response to abiotic 
stress 757

Metabolic shifts enable plants to cope with a variety of 
abiotic stresses 759

The process of recovery from stress can be dangerous 
to the plant and requires a coordinated adjustment of 
plant metabolism and physiology 759 

Developing crops with enhanced tolerance to abiotic 
stress conditions is a major goal of agricultural 
research 759
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