
CONTENTS

Acknowledgments
Preface for instructors

The inspiration of GEB
Which “theory” course are we talking about?
The features that might make this book appealing 
What’s in and what’s out 
Possible courses based on this book 
Computer science as a liberal art

xiii 
XV 
XV 
XV 

XV i 
XV ii
xvii

xviii

OVERVIEW i
1 INTRODUCTION: WHAT CAN AND CANNOT BE COMPUTED? 3

1.1 Tractable problems 4
1.2 Intractable problems 5
1.3 Uncomputable problems 6
1.4 A more detailed overview of the book 6

Overview of part I: Computability theory 6
Overview of part II: Complexity theory 7
Overview of part III: Origins and applications 8

1.5 Prerequisites for understanding this book 8
1.6 The goals of the book 9

The fundamental goal: What can be computed? 9
Secondary goal 1: A practical approach 9
Secondary goal 2: Some historical insight 10

1.7 Why study the theory of computation? 10
Reason 1: The theory of computation is useful 10
Reason 2: The theory of computation is beautiful and important 11
Exercises 11

Parti: COMPUTABILITY THEORY 13

2 WHAT IS A COMPUTER PROGRAM? 15
2.1 Some Python program basics 15

Editing and rerunning a Python program 17
Running a Python program on input from a file 17
Running more complex experiments on Python programs 18

2.2 SISO Python programs 18
Programs that call other functions and programs 20

2.3 ASCII characters and multiline strings 21
2.4 Some problematic programs 22



vi • Contents

2.5 Formai definition of Python program 23
2.6 Decision programs and equivalent programs 25
2.7 Real-world programs versus SISO Python programs 26

Exercises 27

3 SOME IMPOSSIBLE PYTHON PROGRAMS 30
3.1 Proof by contradiction 30
3.2 Programs that analyze other programs 31

Programs that analyze themselves 33
3.3 The program yesOnString .py 33
3.4 The program yesOnSel f . py 34
3.5 The program notYesOnSelf .py 36
3.6 yesOnString.py can’t exist either 37

A compact proof that yesOnString.py can’t exist 37
3.7 Perfect bug-finding programs are impossible 39
3.8 We can still find bugs, but we can’t do it perfectly 41

Exercises 42

4 WHAT IS A COMPUTATIONAL PROBLEM? 45
4.1 Graphs, alphabets, strings, and languages 46

Graphs 46
Trees and rooted trees 49
Alphabets 49
Strings 50
Languages 51

4.2 Defining computational problems 53
Positive and negative instances 55
Notation for computational problems 56

4.3 Categories of computational problems 57
Search problems 57
Optimization problems 57
Threshold problems 57
Function problems 58
Decision problems 58
Converting between general and decision problems 59
Complement of a decision problem 60
Computational problems with two input strings 61

4.4 The formal definition of “solving” a problem 62
Computable functions 63

4.5 Recognizing and deciding languages 63
Recognizable languages 65
Recursive and recursively enumerable languages 66
Exercises 66

5 TURING MACHINES: THE SIMPLEST COMPUTERS 71
5.1 Definition of a Turing machine 72

Halting and looping 76
Accepters and transducers 77



Contents • vii

Abbreviated notation for state diagrams 
Creating your own Turing machines

5.2 Some nontrivial Turing machines 
The moreCsThanGs machine 
The countCs machine
Important lessons from the countCs example 

5 3 From single-tape Turing machines to multi-tape Turing machines 
Two-tape, single-head Turing machines 
Two-way infinite tapes 
Multi-tape, single-head Turing machines 
Two-tape, two-head Turing machines

5.4 From multi-tape Turing machines to Python programs and beyond 
Multi-tape Turing machine —> random-access Turing machine 
Random-access Turing machine —» real computer
Modern computer —>■ Python program

5.5 Going back the other way: Simulating a Turing machine
with Python

A serious caveat: Memory limitations and other technicalities
5.6 Classical computers can simulate quantum computers
5.7 All known computers are Turing equivalent 

Exercises

78
78
79
80 
81
85
86
87
88
89
90
91
92 
92 
95

95
97
98
98
99

6 UNIVERSAL COMPUTER PROGRAMS: PROGRAMS THAT CAN DO ANYTHING 103
6.1 Universal Python programs 104
6.2 Universal Turing machines 105
6.3 Universal computation in the real world 107
6.4 Programs that alter other programs 110

Ignoring the input and performing a fixed calculation instead 112
6.5 Problems that are undecidablc but recognizable 113

Exercises 114

7 REDUCTIONS: HOWTO PR0VEAPR0BLEM IS HARD 116
7.1 A reduction for easiness 116
7.2 A reduction for hardness 118
7.3 Formal definition of Turing reduction 120

Why “Turing” reduction? 120
Oracle programs 121
Why is < r used to denote a Turing reduction? 121
Beware the true meaning of “reduction” 121

7.4 Properties of Turing reductions 122
7.5 An abundance of uncomputable problems 123

The variants of YesOnString 123
The halting problem and its variants 126
Uncomputable problems that aren’t decision problems 128

7.6 Even more uncomputable problems 130
The computational problem COMPUTES/: 132
Rice’s theorem 134

7.7 Uncomputable problems that aren’t about programs 134



vi i i • Contents

7.8 Nor every question about programs is uncomputable 135
7.9 Proof techniques for uncomputability 136

Technique 1: The reduction recipe 137
Technique 2: Reduction with explicit Python programs 138
Technique 3: Apply Rice’s theorem 139
Exercises 140

8 NONDETERMINISM: MAGIC OR REALITY? 143
8.1 Nondeterministic Python programs 144
8.2 Nondeterministic programs for nondecision problems 148
8.3 Computation trees 149
8.4 Nondeterminism doesn’t change what is computable 153
8.5 Nondeterministic Turing machines 154
8.6 Formal definition of nondeterministic Turing machines 156
8.7 Models of nondeterminism 158
8.8 Unrecognizable problems 158
8.9 Why study nondeterminism? 159

Exercises 160

9 FINITE AUTOMATA: COMPUTING WITH LIMITED RESOURCES 164
9.1 Deterministic finite automata 164
9.2 Nondeterministic finite automata 167

State diagrams for nfas 168
Formal definition of an nfa 169
How docs an nfa accept a string? 170
Sometimes nfas make things easier 170

9.3 Equivalence of nfas and dfas 170
Nondeterminism can affect computability: The example of pdas 173
Practicality of converted nfas 174
Minimizing the size of dfas 175

9.4 Regular expressions 175
Pure regular expressions 176
Standard regular expressions 177
Converting between regexes and finite automata 178

9.5 Some languages aren’t regular 181
The nonregular language GnTn 181
The key difference between Turing machines and finite automata 183

9.6 Many more nonregular languages 183
The pumping lemma 185

9.7 Combining regular languages 187
Exercises 188

Partii: COMPUTATIONAL COMPLEXITY THEORY 193

10 COMPLEXITY THEORY: WHEN EFFICIENCY DOES MATTER 195
10.1 Complexity theory uses asymptotic running times 195
10.2 Big-0 notation 197

Dominant terms of functions 199
A practical definition of big-O notation 201



Contents • ix

Superpolynomial and subexponential 202
Other asymptotic notation 202
Composition of polynomials is polynomial 203
Counting things with big-0 203

10.3 The running time of a program 204
Running time of a Turing machine 204
Running time of a Python program 206
The lack of rigor in Python running times 209

10.4 Fundamentals of determining time complexity 210
A crucial distinction: The length of the input versus the numerical

value of the input 210
The complexity of arithmetic operations 212
Beware of constant-time arithmetic operations 214
The complexity of factoring 215
The importance of the hardness of factoring 216
The complexity of sorting 217

10.5 For complexity, the computational model does matter 217
Simulation costs for common computational models 217
Multi-tape simulation has quadratic cost 218
Random-access simulation has cubic cost 219
Universal simulation has logarithmic cost 219
Real computers cost only a constant factor 220
Python programs cost the same as real computers 220
Python programs can simulate random-access Turing

machines efficiently 220
Quantum simulation may have exponential cost 220
All classical computational models differ by only

polynomial factors 221
Our standard computational model: Python programs 221

10.6 Complexity classes 221
Exercises 224

11 Poly AND Expo: THE TWO MOST FUNDAMENTAL COMPLEXITY CLASSES 228
11.1 Definitions of Poly and Expo 228

Poly and Expo compared to P, Exp, and FP 229
11.2 Poly is a subset of Expo 230
11.3 A first look at the boundary between Poly and Expo 231

ALL3SETS and AllSUBSETS 231
Traveling salespeople and shortest paths 232
Multiplying and factoring 235
Back to the boundary between Poly and Expo 235
Primality testing is in Poly 237

11.4 Poly and Expo don’t care about the computational model 238
11.5 HaltEX: A decision problem in Expo but not Poly 238
11.6 Other problems that are outside Poly 243
11.7 Unreasonable encodings of the input affect complexity 244
H.8 Why study Poly, really? 245

Exercises 246



x • Contents

12 PolyCheckANDNPoly: HARD PROBLEMS THAT ARE EASY TO VERIFY 250
12.1 Verifiers 250

Why “unsure”? 253
12.2 Polytime verifiers 254

Bounding the length of proposed solutions and hints 255
Verifying negative instances in exponential time 255
Solving arbitrary instances in exponential time 255

12.3 The complexity class PolyCheck 256
Some PolyCheck examples: Packing, SubsetSum, and

Partition 256
The haystack analogy for PolyCheck 257

12.4 The complexity class NPoly 258
12.5 PolyCheck and ŇPoly arc identical 259

Every PolyCheck problem is in NPoly 259
Every NPoly problem is in PolyCheck 260

12.6 The PolyCheck/NPoly sandwich 263
12.7 Nondeterminism does seem to change what is

computable efficiently 264
12.8 The fine print about NPoly 265

An alternative definition of NPoly 265
NPoly compared to NP and FNP 266
Exercises 268

13 POLYNOMIAL-TIME MAPPING REDUCTIONS: PROVING X IS AS EASY AS У 272
13.1 Definition of polytime mapping reductions 272

Polyreducing to nondecision problems 275
13.2 The meaning of polynomial-time mapping reductions 275
13.3 Proof techniques for polyreductions 276
13.4 Examples of polyreductions using Hamilton cycles 277

A polyreduction from UHC to DHC 278
A polyreduction from DHC to UHC 279

13.5 Three satisfiability problems: CircuitSat, Sa i, and 3-Sat 281
Why do we study satisfiability problems? 281
CircuitSat 281
Sat 282
Conjunctive normal form 284
ASCII representation of Boolean formulas 284
3-SAT 285

13.6 Polyreductions between CircuitSat, Sat, and 3-Sat 285
The Tseytin transformation 285

13.7 Polyequivalence and its consequences 290
Exercises 291

14 NP-COMPLETENESS: MOST HARD PROBLEMS ARE EQUALLY HARD 294
14.1 P versus NP 294
14.2 NP-completeness 296

Reformulations of P versus NP using NP-completeness 298
14.3 NP-hardness 298



Contents • xi

14.4 Consequences of P=NP 301
14.5 CircuitSat is a “hardest” NP problem 302
14.6 NP-completeness is widespread 306
14.7 Proof techniques for NP-completeness 308
14.8 The good news and bad news about NP-completeness 309

Problems in NPoly but probably not NP hard 309
Some problems that are in P 309
Some NP-hard problems can be approximated efficiently 310
Some NP-hard problems can be solved efficiently for

real-world inputs 310
Some NP-hard problems can be solved in pseudo-polynomial

time 310
Exercises 311

Part III: ORIGINS AND APPLICATIONS 315
1 5 THE ORIGINALTURING MACHINE 317

15.1 Turing’s definition of a “computing machine” 318
15.2 Machines can compute what humans can compute 324
15.3 The Church-Turing thesis: A law of nature? 327

The equivalence of digital computers 327
Church’s thesis: The equivalence of computer programs

and algorithms 328
Turing’s thesis: The equivalence of computer programs

and human brains 329
Church-Turing thesis: The equivalence of

all computational processes 329
Exercises 330

16 YOU CAN'T PROVE EVERYTHING THAT'S TRUE 332
The history of computer proofs 332

16.1 Mechanical proofs 333
Semantics and truth 336
Consistency and completeness 338
Decidability of logical systems 339

16.2 Arithmetic as a logical system 340
Converting the halting problem to a statement about integers 341
Recognizing provable statements about integers 343
The consistency of Peano arithmetic 344

16.3 The undecidability of mathematics 345
16.4 The incompleteness of mathematics 346
16.5 What have we learned and why did we learn it? 349

Exercises 350

17 KARP'S 21 PROBLEMS 353
17.1 Karp’s overview 353
17.2 Karp’s definition of NP-completeness 355
17.3 The list of 21 NP-complete problems 357



xii • Contents

17.4 Reductions between the 21 NP-complete problems 359
Polyreducing Sat to Clique 361
Polyreducing CLIQUE to NODE COVER 363
Polyreducing DHC to UHC 364
Polyreducing Sat to 3-Sat 365
Polyreducing KNAPSACK to PARTITION 365

17.5 The rest of the paper: NP-hardness and more 367
Exercises 367

18 CONCLUSION: WHATWILL BE COMPUTED? 370
18.1 The big ideas about what can be computed 370

Bibliography 373
Index 375


