Also from John Wiley . . .

STOCHASTIC ANALYSIS

Edited by D. G. Kendall and E. F. Harding, Statistical Laboratory, University of Cambridge

This is a co-operative work of research papers and surveys covering this subject completely. It contains a detailed treatment of the theory of delphic semi-groups. Together with the companion volume on Stochastic Geometry by the same editors, it is dedicated to the memory of Rollo Davidson.

465 pages

1973

STOCHASTIC GEOMETRY

Edited by E. F. Harding and D. G. Kendall, Statistical Laboratory, University of Cambridge

This is a co-operative work of research papers and surveys covering the subject completely. Together with a companion volume on Stochastic Analysis by the same editors, it is dedicated to the memory of Rollo Davidson.

400 pages

1974

STOCHASTIC MODELS FOR SOCIAL PROCESSES

D. J. Barcholomew. London School of Economics and Political Science

The second edition of this book, like the first, is a contribution to the study of social phenomena by means of the theory of stochastic processes. It is aimed on the one hand at all social scientists who wish to have an account of what the theory can offer in their own fields and on the other at research workers, teachers and students of mathematics and statistics to whom it offers a field of application which is both mathematically stimulating and politically important. It is also aimed at the increasing number of social scientists who are being taught this subject at postgraduate level.

411 pages

1967

STATISTICAL INFERENCE UNDER ORDER RESTRICTIONS

R E Ballow, University of California, D. J. Bartholomew, London School of Economics

M. Bremper, University of Kent and H. D. Brunk, Oregon State University

This pook is a reasonably broad coverage, ranging from abstract mathematical foundations to the tables and formulae needed for applications, of the recent work on statistical interence in the presence of order conditions. In general, theory and applications are intertwined but the most general mathematical discussion is given in the last chapter. Numerical examples have only been introduced when their presence aids the exposition.

388 pages

1972

MATHEMATICAL TAXONOMY

Nicholas Jardine and Robin Sibson, Kings College, Cambridge

This book develops methods of data simplification which are relevant to all branches of science in which problems of classification arise. In the first two parts of the book a rigorous mathematical treatment of the measurement of dissimilarity between populations and of the grouping of populations in classifications is given. A variety of new methods for automatic classification are derived within this theoretical treatment. In the third part the ways in which these methods may be used as research tools in biological taxonomy are described. Worked examples, and full computational details of the various methods are appended. Emphasis is placed throughout on critical analysis of the properties of methods of automatic classification, so that those who wish to use them either in biological taxonomy or in classificatory problems in other fields may be aware of their shortcomings and advantages.

286 pages

1971

JOHN WILEY & SONS London - New York - Sydney - Toronto A Wiley - Interscience Publication

A List of Symbols and Notation Conventions			
1	Intr	oduction	1
	1.1	Historical sketch	1
	1.2	Generalities about populations	5
		A survey of results	9
2	The	Galton-Watson Process	19
	2.1	Introduction	19
	2.2	Moments and the generating function	20
	2.3	The extinction probability	22
	2.4	Critical processes	24
	2.5	A simple but basic lemma	26
	2.6	Subcritical processes	28
	2.7	Supercritical processes	30
	2.8	Attaining high levels	35
	2.9	Rate of convergence results for supercritical processes	36
	2.10	Prediction in large supercritical processes and another rate	
		of convergence result	37
	2.11	The total progeny of a branching process	39
	2.12	The relation between a process and its total progeny	42
		Maximum likelihood estimation of the reproduction mean	
		and a Bayes example	45
	2.14	Estimation of the extinction probability	50
3	Nei	ighbours of the Galton-Watson Process	54
	3.1	Branching processes with immigration	54
	3.2	Increasing numbers of ancestors	60
	3.3	Approximation by critical processes	63
	3.4	A diffusion approximation	67
	3.5	Galton-Watson processes in varying environments	70
	3.6	Further results for varying environments	77
	3.7	Random environments	81

	CONTENTS	1X
4 R	esults for Multi-type Processes	87
4.1		87
4.2	Analogues of classical results	92
5 In	terlude about Martingales, Renewal Theory, and Poin	t
P	rocesses	97
5.1	Martingales	97
5.2	The renewal equation	104
5.3	Refined renewal theorems	114
5.4	Point processes	120
6 T	he General Process	123
6.1	Introduction	123
6.2	The finiteness of the process	126
6.3	Moments and the generating functions	129
6.4	More about the second moments	135
6.5	The extinction probability	139
6.6	Critical processes	143
6.7	The subcritical case	156
6.8	Supercritical processes	164
6.9		167
6.1		169
6.1		
	differing from its progeny	176
	2 The total progeny	182
	3 Integrals of branching processes and their generalizations	183
6.1	4 Maximum likelihood estimation of the reproduction mean	186
7 N	eighbours of the General Process	190
7.1		190
7.2		199
7.3		200
7.4	Diffusion approximations	202
8 B	ranching Processes and Demography	207
8.1	Classical continuous time demography and age dependent	
	birth and death processes	207
8.2	Lotka's equation	209
8.3	The growth of populations	211
8.4	The age at childbearing	214
8.5	The length of generations	215

9 Br	anching Models in Cell Kinetics	224		
9.1	Cell proliferation and binary splitting	224		
9.2	Estimation of cell death	228		
9.3	The cycle time distribution	230		
9.4	The fraction labelled mitoses	232		
9.5	FLM functions in binary splitting	236		
9.6	Continuous labelling	241		
9.7	Arrest methods	245		
9.8	Synchrony	248		
9.9	The composition of two-type populations: endomitosis and			
	the G_0 resting phase	250		
Appendix				
Index				