

Overview of Contents

Foreword	v
Preface	vi
A Note to Students	viii
Abbreviations	x
Prologue: The History and Scope of Organic Chemistry	xxvi
Chapter 1 Atoms, Molecules, and Chemical Bonding—a Review	1
Chapter 2 Molecular Structure and Shapes of Organic Molecules	22
Chapter 3 Organic Compounds: their Functional Groups, Intermolecular Interactions, and Physical Properties	42
Chapter 4 Conformation and Strain in Molecules	71
Chapter 5 Conjugation, π -Electron Delocalization, and Aromaticity	89
Chapter 6 Acids and Bases	110
Chapter 7 Organic Reactions and the Concept of Mechanism	138
Chapter 8 Nucleophilic Addition to the Carbonyl Group in Aldehydes and Ketones	165
Chapter 9 Nucleophilic Substitution Reactions of Carboxylic Acid Derivatives	188
Chapter 10 Reactions of Carbonyl Compounds with Hydride Donors and Organometallic Reagents	208
Chapter 11 Stereochemistry and Molecular Chirality	225
Chapter 12 Nucleophilic Substitution Reactions of Haloalkanes and Related Compounds	250
Chapter 13 Elimination Reactions of Haloalkanes and Related Compounds	273
Chapter 14 Reactions of Alcohols, Ethers, Thiols, Sulfides, and Amines	289
Chapter 15 Addition Reactions of Alkenes and Alkynes	314
Chapter 16 Electrophilic Aromatic Substitution	341
Chapter 17 Enolate Ions, their Equivalents, and Reactions	373
Chapter 18 Reactions of Nucleophiles with Alkenes and Aromatic Compounds	402
Chapter 19 Polycyclic and Heterocyclic Aromatic Compounds	423
Chapter 20 Reactions involving Radicals	444

Chapter 21	Pericyclic Reactions: Cycloadditions, Electrocyclic Reactions, and Sigmatropic Rearrangements	469
Chapter 22	Rearrangement Reactions involving Polar Molecules and Ions	490
Chapter 23	Organic Synthesis	506
Chapter 24	Chemistry of Biomolecules	528
Chapter 25	Structural Determination of Organic Compounds	561
Appendices		602
Additional Resources		617
Index		619

Contents in Detail

Foreword	v
Preface	vi
A Note to Students	viii
Abbreviations	x
Prologue: The History and Scope of Organic Chemistry	xxvi

Chapter 1 Atoms, Molecules, and Chemical Bonding—a Review

1.1 The Electronic Structure of Atoms	1
1.1.1 Atomic structure	1
1.1.2 Electrons and atomic orbitals	2
Panel 1.1 Radiocarbon dating	3
1.1.3 Electronic configuration of an atom	4
1.1.4 Lewis representation of atoms	6
1.2 Chemical Bonding	6
1.2.1 Formation of ions	6
1.2.2 Ionic and covalent bonds	8
1.2.3 Polar covalent bonds and dipoles	10
Panel 1.2 Masses and sizes of atoms	12
1.3 Lewis Structures of Molecules and Ions	12
1.3.1 How to draw Lewis structures	12
1.3.2 Further examples of drawing Lewis structures	15
1.4 Introduction to Resonance	18
Summary	20
Problems	20

Chapter 2 Molecular Structure and Shapes of Organic Molecules

2.1 Shapes of Molecules and the VSEPR Model	22
2.1.1 Tetrahedral shapes	22
2.1.2 Trigonal planar shapes	24
2.1.3 Linear shapes	24
2.2 Orbital Description of Covalent Bonding	25
2.2.1 Atomic orbitals and their shapes	25
2.2.2 Overlap of atomic orbitals to give molecular orbitals	27
2.3 Hybridization of Atomic Orbitals	28
2.3.1 Three types of hybrid orbitals	28
Panel 2.1 The work of Linus Pauling	28
2.3.2 Energies of hybrid orbitals	29
2.4 Bonding in Methane	30
2.5 Bonding in Ethene	31
2.5.1 Trigonal planar carbons	31
2.5.2 The pi (π) orbitals	31
2.6 Bonding in Ethyne	33
2.7 Hybridization of Carbon and Bond Lengths	35
2.8 Drawing Organic Structures	35
2.9 Isomerism	37

2.9.1	Constitutional isomers	37
2.9.2	<i>cis-trans</i> isomerism	37
2.9.3	<i>E,Z</i> nomenclature for <i>cis-trans</i> isomers of alkenes	38
Summary		40
Problems		40

Chapter 3 Organic Compounds: their Functional Groups, Intermolecular Interactions, and Physical Properties

3.1	Functional Groups	42
3.2	Hydrocarbons	43
3.2.1	Alkanes and cycloalkanes	43
Panel 3.1	Organic resources: coal, oil, and natural gas	46
3.2.2	Alkenes and alkynes	49
Panel 3.2	Ethene as an industrial raw material	49
3.2.3	Arenes	50
3.3	Alcohols, Ethers, and their Sulfur Analogues	50
3.3.1	Alcohols	51
3.3.2	Ethers	52
3.3.3	Thiols	52
3.4	Haloalkanes	52
3.5	Nitrogen Compounds	53
3.5.1	Amines	53
3.5.2	Nitro compounds	54
3.6	Aldehydes and Ketones	54
3.7	Carboxylic Acids and their Derivatives	55
3.8	Elements of Organic Nomenclature	56
3.8.1	IUPAC nomenclature	56
3.8.2	Naming a non-aromatic hydrocarbon	57
3.8.3	Naming a compound with one or more functional groups	58
3.8.4	Naming aromatic compounds	60
3.9	Intermolecular Interactions and Physical Properties of Organic Compounds	61
3.9.1	van der Waals forces	61
3.9.2	Hydrogen bonds	62
3.9.3	States of matter and phase changes	63
3.9.4	Boiling points of organic compounds	63
3.9.5	Solubility	65
Panel 3.3	Chromatography	66
Summary		68
Problems		69

Chapter 4 Conformation and Strain in Molecules

4.1	Molecular Vibrations and Internal Rotation	71
4.1.1	Bond stretching and bending vibrations	71
4.1.2	Internal rotation	72
4.2	Conformations of Alkanes	72
4.2.1	Ethane and torsional strain	72
4.2.2	Butane and steric strain	76
4.3	Cycloalkanes	77
4.3.1	Cyclopropane and angle strain	77
4.3.2	Cyclobutane and cyclopentane	78
4.3.3	Cyclohexane: chair conformations	79
Panel 4.1	Heterocyclic chair compounds: tetrodotoxin	82

4.3.4	Cyclohexane: ring inversion of chair conformations	82
4.4	Disubstituted Cycloalkanes: <i>cis</i> – <i>trans</i> Isomerism	84
4.5	Strain in Cycloalkanes: Heat of Combustion	85
Panel 4.2	Bicycloalkanes	86
Summary		87
Problems		87
Chapter 5 Conjugation, π-Electron Delocalization, and Aromaticity		89
5.1	Extended π Bonds and the Concept of Conjugation	90
5.2	Bonding in Butadiene	90
5.3	Allylic Systems	92
5.3.1	Molecular orbitals of allylic systems	92
5.3.2	Resonance description of allylic systems	93
5.3.3	Allyl anion analogues	94
5.4	Resonance Revisited	95
5.4.1	The nature of resonance	95
5.4.2	Resonance forms and their relative contributions	95
5.5	Benzene	98
5.5.1	Structure of benzene	98
5.5.2	Molecular orbitals of benzene	98
5.5.3	Stabilization energy of benzene	99
Panel 5.1	The structure of benzene and Kekulé's dreams	100
5.6	Aromaticity in General	100
5.6.1	Hückel's rule	100
5.6.2	Annulenes	104
5.7	Photoexcited Organic Molecules	104
5.7.1	Interactions of organic molecules with electromagnetic radiation	104
5.7.2	Properties of photoexcited states	105
Panel 5.2	The perception of colours	106
5.7.3	Photochemical reactions	106
Panel 5.3	The chemistry of vision	107
Summary		108
Problems		108
Chapter 6 Acids and Bases		110
6.1	Definitions of Acids and Bases	111
6.1.1	Brønsted acids and bases	111
6.1.2	Lewis acids and bases	112
6.2	Equilibrium in Brønsted Acid–Base Reactions	113
6.2.1	Acid dissociation constants and pK_a	114
Panel 6.1	pK_a values for water and the oxonium ion	115
6.2.2	Equilibrium in acid–base reactions	115
6.2.3	Acidity of aqueous solutions and ratios of conjugate acid–base pairs	117
6.2.4	Buffer solutions	118
Panel 6.2	pH indicators and colours of flowers	119
6.3	Factors which affect the Strength of an Acid	120
6.3.1	The element bearing the acidic hydrogen	120
6.3.2	Charge delocalization in anions	121
6.3.3	Substituent effects	122
6.4	Carbon Acids and Carbanions	124
6.4.1	Hydrocarbons	124
6.4.2	Effects of electron-withdrawing groups on C–H acidity	127

6.5	Basicity of Organic Compounds	129
6.5.1	Definition of base strengths	129
6.5.2	Nitrogen bases	129
6.5.3	Weakly basic organic compounds	130
6.6	Polyfunctional Acids and Bases	131
6.7	Solvent Effects on Acid–Base Reactions	133
6.7.1	The levelling effect of water	133
Panel 6.3	Extraction of morphine from opium	134
6.7.2	Acid–base reactions in non-aqueous solvents	135
Summary		136
Problems		136

Chapter 7 Organic Reactions and the Concept of Mechanism 138

7.1	Classes of Organic Chemical Reactions	138
7.2	Elementary Steps in a Chemical Reaction	140
7.2.1	Homolysis	140
7.2.2	Heterolysis	141
7.2.3	Concerted bond formation and cleavage in an elementary reaction	143
7.2.4	The transition structure in a concerted elementary reaction	144
7.2.5	Site of nucleophilic attack at a cationic electrophile	145
7.2.6	Sigma and pi bonds as nucleophilic centres	146
7.3	A Molecular Orbital Description of Polar Elementary Reactions	147
7.3.1	Orbital interactions in bimolecular elementary reactions	147
7.3.2	HOMO–LUMO interactions	148
7.3.3	Orbital overlap and orientation	149
7.4	Reaction Energetics, Reaction Profiles, and Equilibria	150
7.4.1	Energy change for a one-step reaction of a single molecule	150
7.4.2	From reaction of a single molecule to reaction on a molar scale	150
Panel 7.1	Reaction profiles for unimolecular bond-cleavage elementary reactions	151
7.4.3	Gibbs energy reaction profiles	152
7.4.4	Profiles of multistep reactions	153
7.4.5	Equilibrium constant	155
7.5	Characterization of Organic Reactions and Investigation of their Mechanisms	156
7.5.1	Product studies and mechanistic proposals	156
Panel 7.2	The Hammond postulate	157
7.5.2	Detection of intermediates in stepwise mechanisms	158
7.5.3	The rate law as an indicator of mechanism	159
7.5.4	Effect of substrate structure and reaction conditions on rate constants	160
Summary		161
Problems		162

Chapter 8 Nucleophilic Addition to the Carbonyl Group in Aldehydes and Ketones 165

8.1	Polarity of the Carbonyl Bond	166
Panel 8.1	Common carbonyl compounds: methanal, ethanal, and propanone	168
8.2	Formation of Cyanohydrins	169
8.3	Addition of Water to Aldehydes and Ketones	171
8.3.1	Hydration equilibrium	171
8.3.2	The mechanism of hydration of carbonyl compounds and catalysis	173
8.3.3	Reversibility of hydration and oxygen isotope exchange	175
8.4	Addition of Alcohols to Aldehydes and Ketones	176
8.4.1	Formation of hemiacetals	176
8.4.2	Formation of acetals	177

8.4.3	Addition of thiols	180
8.5	Addition of Bisulfite to Aldehydes and Ketones	180
8.6	Imines and Enamines	181
8.6.1	Reactions of primary amines with aldehydes and ketones	181
8.6.2	Reactions of secondary amines with aldehydes and ketones	183
8.7	The Wittig Reaction	183
Panel 8.2	Imines in biochemical reactions	184
Summary		185
Problems		186
Chapter 9	Nucleophilic Substitution Reactions of Carboxylic Acid Derivatives	188
9.1	Reactions of Carboxylic Acid Derivatives	189
Panel 9.1	Common names of carboxylic acids	189
9.2	Hydrolysis of Esters	190
9.2.1	Hydration of the carbonyl group	190
9.2.2	Reaction under alkaline conditions	190
9.2.3	Acid-catalysed hydrolysis	192
9.2.4	Evidence for a tetrahedral intermediate	193
9.3	Other Reactions of Esters	195
9.3.1	Ester exchange reactions	195
9.3.2	Reactions of esters with amines	195
9.4	Generalized Nucleophilic Addition-Elimination Reactions	196
9.4.1	Reaction mechanism	196
9.4.2	Relative reactivities of carboxylic acid derivatives	197
9.4.3	Comparison of reactions of nucleophiles with carboxylic acid derivatives and with aldehydes and ketones	198
9.5	Interconversion of Carboxylic Acid Derivatives	199
9.5.1	Acyl chlorides	199
9.5.2	Acid anhydrides	200
9.5.3	Amides	201
9.5.4	Carboxylic acids	201
Panel 9.2	Lactones and lactams	202
9.5.5	Summary of relative reactivities	203
9.6	Polycondensation	203
Panel 9.3	Recycling of PET	204
Summary		205
Problems		206
Chapter 10	Reactions of Carbonyl Compounds with Hydride Donors and Organometallic Reagents	208
10.1	Hydride Reduction of Carbonyl Groups	208
10.1.1	Reduction of aldehydes and ketones	208
Panel 10.1	Bonding in BH_4^-	209
10.1.2	Reduction of carboxylic acid derivatives	210
10.2	Indirect Reduction of Aldehydes and Ketones	211
10.2.1	Reductive amination	212
10.2.2	Reduction of the C=O of aldehydes and ketones to give CH_2	212
10.3	Hydride Transfer from Carbon	213
Panel 10.2	The Meerwein-Ponndorf-Verley-Oppenauer reaction	214
Panel 10.3	Nature's hydride donor: NADH	215
10.4	Reactions with Organometallic Reagents: C–C Bond Formation	215
10.4.1	Organometallic compounds	215

10.4.2 The Grignard reaction	217
10.4.3 Side reactions with Grignard reagents	219
10.5 Planning Organic Syntheses: Synthesis of Alcohols	220
10.5.1 An introduction to organic synthesis	220
10.5.2 Examples of alcohol synthesis	220
10.5.3 Protection of carbonyl groups and deprotection	221
Summary	223
Problems	223

Chapter 11 Stereochemistry and Molecular Chirality 225

11.1 Chirality	225
11.1.1 Chiral molecules	226
11.1.2 The basis of chirality in molecules	227
Panel 11.1 Right- and left-handed helices	228
Panel 11.2 Summary of isomeric hierarchy	230
11.2 <i>R,S</i> nomenclature for Chirality Centres	231
11.3 The Fischer Convention for representing the Configuration of Chirality Centres	232
11.4 Compounds with two Chirality Centres	233
11.4.1 Enantiomers and diastereoisomers	233
11.4.2 Meso compounds	235
11.5 Properties of Stereoisomers	237
11.5.1 Properties in achiral environments	237
11.5.2 Optical activity	237
Panel 11.3 Configurations of sugars and amino acids	238
11.5.3 Resolution of enantiomers	240
Panel 11.4 Pasteur's resolution of a salt of (\pm) -tartaric acid	242
11.6 Chirality of Conformationally Mobile Molecules	243
11.7 Enantiomers with a Chirality Axis	244
11.8 Reactions which give Enantiomeric Products	245
Summary	247
Problems	247

Chapter 12 Nucleophilic Substitution Reactions of Haloalkanes and Related Compounds 250

12.1 Reactivity of Haloalkanes with Nucleophiles	251
12.2 The S_N2 Mechanism	252
Panel 12.1 Biological alkylation	252
12.2.1 Steric hindrance in S_N2 reactions	253
12.2.2 Stereochemistry of the S_N2 mechanism	254
12.2.3 Stereoelectronic description of the S_N2 mechanism	255
12.2.4 Nucleophiles and nucleofuges	255
12.3 Solvent Effects	257
12.3.1 Polarity of the transition structure	257
12.3.2 Classes of solvents	259
12.4 The S_N1 Mechanism	260
Panel 12.2 Phase-transfer catalysis	260
12.4.1 Carbenium ion intermediates	261
12.4.2 Stereochemistry of the S_N1 mechanism	262
12.4.3 Stability of carbenium ions	263
Panel 12.3 The S_N1 mechanism in biological substitution reactions	265
12.5 Intramolecular Nucleophilic Displacement: Neighbouring Group Participation	266
12.6 Competition between S_N1 and S_N2 Mechanisms	268

Summary	270
Problems	270
Chapter 13 Elimination Reactions of Haloalkanes and Related Compounds	273
13.1 The E1 Elimination Mechanism	273
13.2 The E2 Elimination Mechanism	275
13.2.1 Stereoelectronic description of the E2 mechanism	276
13.3 The E1cB Elimination Mechanism and Graded Transition Structures in the E2 Mechanism	277
13.4 Reaction Maps	278
13.5 Regioselectivity in Elimination	280
13.5.1 Regioselectivity in E1 eliminations	280
13.5.2 Regioselectivity in E2 eliminations	281
Panel 13.1 Hofmann and Zaitsev regioselectivity, and Bredt's rule	283
13.6 Competition between Elimination and Substitution	284
Panel 13.2 Polyhalogenated compounds and the environment	284
Summary	286
Problems	287
Supplementary Problems	288
Chapter 14 Reactions of Alcohols, Ethers, Thiols, Sulfides, and Amines	289
14.1 Acid-Catalysed Reactions of Alcohols and Ethers	290
14.1.1 Leaving ability of hydroxide and alkoxide	290
14.1.2 Reactions with hydrogen halides	291
14.1.3 Dehydration of alcohols	292
14.2 Rearrangements involving Carbenium Ions	293
Panel 14.1 Industrial productions of alcohols	294
14.3 Conversion of OH into a Better Nucleofuge	296
14.3.1 Sulfonate esters	296
14.3.2 Sulfur and phosphorus reagents	296
Panel 14.2 The Mitsunobu reaction	298
14.4 Oxidation of Alcohols	298
Panel 14.3 Breath test for alcohol	299
Panel 14.4 Swern oxidation	300
14.5 Ring Opening of Epoxides	300
14.5.1 Acid-catalysed ring opening	300
14.5.2 Base-catalysed ring opening	301
Panel 14.5 Crown ethers and cryptands	302
Panel 14.6 Fluorodeoxyglucose in cancer diagnosis: rapid synthesis by an S_N2 reaction using a cryptand	302
14.6 Thiols and Other Sulfur Compounds	304
14.6.1 Thiols and their derivatives	304
14.6.2 Biological thiols: their functions and derivatives	305
14.6.3 Dual electronic effects of alkylthio groups	307
14.6.4 Compounds of S(IV) and S(VI)	308
14.7 Reactions of Amines	308
14.7.1 Amines as nucleophiles and nucleofuges	308
14.7.2 Reactions of alkylamines with nitrous acid	309
14.7.3 Alkanediazonium ions	310
Summary	311
Problems	311
Supplementary Problems	313

Chapter 15 Addition Reactions of Alkenes and Alkynes

15.1	Electrophilic Addition to Alkenes	315
Panel 15.1	Ethene as a plant hormone	316
15.2	Addition of Hydrogen Halides: Hydrohalogenation	316
15.2.1	Reaction mechanism	316
15.2.2	Regioselectivity in addition to unsymmetrical alkenes	317
15.2.3	Stereochemistry of addition	319
15.2.4	Electrophilic addition to alkynes	319
Panel 15.2	Cyclic enediyne antitumour antibiotics	320
15.3	Addition of Water	321
15.3.1	Acid-catalysed hydration	321
15.3.2	Oxymercuration–demercuration	322
15.3.3	Hydroboration–oxidation	323
15.3.4	Hydration of alkynes	324
15.4	Addition of Halogens	325
15.5	Epoxidation	327
15.6	Addition of Carbenes	327
15.7	Addition of Carbenium Ions to Alkenes and Cationic Polymerization	329
15.8	Electrophilic Additions to Butadiene	330
15.8.1	1,2-Addition and 1,4-addition	330
15.8.2	Kinetic and thermodynamic control	331
15.9	Diels–Alder Reactions	332
15.9.1	Stereospecificity in Diels–Alder reactions	333
15.10	Addition of Hydrogen	334
Panel 15.3	Relative stabilities and heats of hydrogenation of alkenes	335
Panel 15.4	Oxidation and reduction in organic chemistry	336
Summary		338
Problems		338
Supplementary Problems		339

Chapter 16 Electrophilic Aromatic Substitution

16.1	Structures of Substituted Benzenes	342
16.2	Electrophilic Aromatic Substitution by an Addition–Elimination Mechanism	342
16.3	Main Classes of Electrophilic Aromatic Substitution	345
16.3.1	Halogenation	345
16.3.2	Nitration	346
16.3.3	Sulfonylation	346
16.3.4	Friedel–Crafts alkylation	347
16.3.5	Friedel–Crafts acylation	348
16.4	Reactivity of Substituted Benzenes and Regioselectivity	349
16.4.1	Activating and deactivating substituents in electrophilic aromatic substitution	349
16.4.2	Effects of substituents on the stability of the benzenium ion	350
16.4.3	Classification of substituents	352
16.4.4	Reactions of disubstituted benzenes	354
16.5	Reactivity of Phenol	355
Panel 16.1	Biological electrophilic aromatic substitution: thyroxine biosynthesis	356
16.6	Reactivity of Aniline	359
16.6.1	Electrophilic substitution	359
Panel 16.2	Quinones	360
Panel 16.3	Naturally occurring phenols	360
16.6.2	Diazotization	362
16.7	Synthesis of Substituted Benzenes	364
16.7.1	Limitations to Friedel–Crafts alkylation	364

16.7.2 Indirect introduction of a primary alkyl group	365
16.7.3 Oxidation of alkyl side-chains	365
16.7.4 Transformations of haloarenes via Grignard reagents	366
16.7.5 Control of reactivity and regioselectivity in syntheses of substituted benzenes	366
Panel 16.4 2-Arylethylamines which have psychological effects	368
Summary	369
Problems	369
Supplementary Problems	371
Chapter 17 Enolate Ions, their Equivalents, and Reactions	373
17.1 Keto-Enol Tautomerism	373
17.1.1 Allylic anions and enolate ions	373
17.1.2 Equilibria involving enols	374
17.2 Mechanisms of Enolization	376
17.2.1 Acid-catalysed enolization	376
17.2.2 Base-catalysed enolization	376
17.3 Reactions via Reversible Enolization	377
17.3.1 Deuterium isotope exchange	377
17.3.2 Racemization	378
17.3.3 Isomerization	379
17.4 α -Halogenation	380
17.4.1 Acid-catalysed halogenation	380
17.4.2 Base-induced halogenation and the haloform reaction	381
17.5 The Aldol Reaction	382
17.5.1 Base-catalysed dimerization of simple aldehydes and ketones	382
Panel 17.1 Borodin: a composer and a chemist	383
Panel 17.2 A biological aldol reaction	384
17.5.2 Dehydration of aldols	385
17.5.3 Intramolecular aldol condensations	386
17.5.4 Crossed aldol reactions	386
17.6 Claisen Condensation	388
17.6.1 Mechanism of the Claisen condensation	389
Panel 17.3 A biological Claisen condensation	389
17.6.2 Intramolecular Claisen condensation	391
17.6.3 Crossed Claisen condensations	391
17.7 Enolate Ions of 1,3-Dicarbonyl Compounds	392
17.8 Alkylation of Enolate Ions	393
17.8.1 Alkylation of 1,3-dicarbonyl compounds	393
17.8.2 Synthesis of ketones and carboxylic acid via enolates of 1,3-dicarbonyl compounds	394
17.9 Lithium Enolates	395
17.9.1 Kinetic and thermodynamic enolates of ketones	396
17.10 Enolate Equivalents	397
17.10.1 Enamines	397
17.10.2 Enol silyl ethers	397
Summary	398
Problems	399
Supplementary Problems	401
Chapter 18 Reactions of Nucleophiles with Alkenes and Aromatic Compounds	402
18.1 Nucleophilic Addition to α , β -Unsaturated Carbonyl Compounds	403
18.1.1 Conjugate addition and carbonyl addition	404

18.1.2 Kinetic and thermodynamic control of carbonyl and conjugate additions	406
18.1.3 Addition of organometallic reagents and metal hydrides to α, β -unsaturated carbonyl compounds	406
18.2 Nucleophilic Addition to Other Electrophilic Alkenes	408
18.3 Anionic Polymerization	409
Panel 18.1 Cyanoacrylate esters in instant glues, for the detection of fingerprints, and in medicine	410
18.4 Conjugate Addition of Enolate Ions to α, β -Unsaturated Carbonyl Compounds	410
18.4.1 The Michael reaction	410
18.4.2 The Robinson annulation	411
18.5 Substitution by a Conjugate Addition-Elimination Mechanism	412
18.6 Nucleophilic Aromatic Substitution by the Addition-Elimination Mechanism	412
18.7 Nucleophilic Aromatic Substitution by the Elimination-Addition Mechanism	414
18.8 Reactions of Arenediazonium Salts	416
Panel 18.2 Benzyne intermediates	417
Summary	418
Problems	419
Supplementary Problems	421
Chapter 19 Polycyclic and Heterocyclic Aromatic Compounds	423
19.1 Polycyclic Aromatic Compounds	424
19.1.1 Structures of polycyclic aromatic hydrocarbons	424
Panel 19.1 Graphene, nanotubes, and fullerenes	425
19.1.2 Reactions of polycyclic aromatic hydrocarbons	426
Panel 19.2 Carcinogenicity of polycyclic aromatic compounds: epoxide intermediates and detoxification	428
19.2 Structures of Aromatic Heterocyclic Compounds	429
19.3 Acid-Base Properties of Heteroaromatic Compounds containing Nitrogen Atoms	430
19.3.1 Basicity of nitrogen-containing heteroaromatic compounds	430
19.3.2 Acidity of pyrrole and imidazole	432
19.4 Reactions of Heteroaromatic Compounds	432
19.4.1 Reactions of pyrrole, furan, and thiophene	432
Panel 19.3 Alkaloids: amines in nature	433
19.4.2 Reactions of pyridine and its derivatives	435
19.5 Synthesis of Aromatic Heterocyclic Compounds	439
Summary	441
Problems	441
Supplementary Problems	442
Chapter 20 Reactions involving Radicals	444
20.1 Homolysis	445
20.2 Structure and Stability of Radicals	446
Panel 20.1 The first radical observed by Gomberg	446
20.3 Halogenation of Alkyl Groups	447
20.3.1 Chlorination of methane	447
20.3.2 Selectivity in the halogenation of alkanes	448
20.3.3 Halogenation at allylic and benzylic positions	450
20.4 Dehalogenation and Related Reductions	452
20.5 Radical Addition Reactions	453
20.5.1 Radical addition of HBr to alkenes	453
20.5.2 Radical additions to alkenes involving Bu_3SnH	455

20.6 Intramolecular Reactions of Radicals	455
20.6.1 Cyclization of alkenyl radicals	455
20.6.2 1,5-Hydrogen transfer	456
20.6.3 Fragmentation of radicals	458
20.7 Radical Polymerization of Alkenes	459
20.8 Autoxidation	460
20.9 Formation of Radical Ions by Single Electron Transfer and their Reactions	461
20.9.1 Dissolving metal reduction	462
20.9.2 One-electron reduction of carbonyl compounds and radical coupling	463
20.9.3 The radical mechanism of nucleophilic substitution	464
20.9.4 Electrode reactions	465
Panel 20.2 Chlorofluorocarbons and the ozone layer	465
Summary	466
Problems	466
Supplementary Problems	468

Chapter 21 Pericyclic Reactions: Cycloadditions, Electrocyclic Reactions, and Sigmatropic Rearrangements 469

21.1 Three Main Types of Pericyclic Reactions	470
21.2 Cycloadditions	470
21.2.1 Diels–Alder reactions	471
21.2.2 1,3-Dipolar cycloaddition	475
21.2.3 Ozonolysis of alkenes	476
21.2.4 Reaction of osmium tetroxide with alkenes	477
21.2.5 Other cycloadditions and related reactions	478
21.3 Electrocyclic Reactions	481
21.4 Sigmatropic Rearrangements of Nonpolar Molecules	482
21.4.1 [3,3] Sigmatropic rearrangements	483
21.4.2 [1,5] Sigmatropic rearrangements	484
Panel 21.1 Biological pericyclic reactions in vitamin D formation	486
Summary	486
Problems	487
Supplementary Problems	488

Chapter 22 Rearrangement Reactions involving Polar Molecules and Ions 490

22.1 1,2-Shifts in Carbenium Ions	490
22.2 Concerted 1,2-Shifts bypassing the Formation of Unstable Carbenium Ions	493
22.3 Catalysed Rearrangement of Carbonyl Compounds involving 1,2-Shifts	494
22.4 Concerted 1,2-Shifts from Carbon to Oxygen and Nitrogen	495
22.4.1 The Baeyer–Villiger oxidation	495
22.4.2 The Beckmann rearrangement	496
22.5 Rearrangements involving Carbenes and Nitrenes or their Precursors	497
22.5.1 Carbenes	497
22.5.2 Nitrenes	497
22.6 Rearrangements involving Neighbouring Group Participation	498
22.6.1 Participation by groups with lone pairs	498
22.6.2 Participation by aryl groups	500
22.6.3 Participation by carbon–carbon double bonds	500
22.6.4 Participation by carbon–carbon σ bonds	501
Summary	503
Problems	503
Supplementary Problems	505

Chapter 23 Organic Synthesis

23.1 Reactions used in Organic Synthesis	506
23.2 Planning Organic Syntheses: Retrosynthetic Analysis	507
Panel 23.1 Recent C–C bond-forming reactions using catalytic organometallic complexes	507
23.2.1 Disconnections: synthons and the corresponding reagents	508
23.2.2 Exploiting functional group interconversions: synthesis of a representative secondary alcohol	510
23.2.3 Disconnections at heteroatoms	512
23.2.4 Multiple functionalities which lead to standard disconnections	513
23.3 Chemoselectivity and Functional Group Protection	516
23.3.1 Selectivity in chemical reactions	516
23.3.2 Protection and deprotection	517
23.4 Efficiency in Organic Synthesis	519
23.5 Stereoselectivity and Asymmetric Synthesis	521
23.6 An Example of a Multistep Synthesis	523
Summary	524
Problems	525

Chapter 24 Chemistry of Biomolecules

24.1 Carbohydrates	528
24.1.1 Monosaccharides	529
24.1.2 Glycosides	530
Panel 24.1 The anomeric effect	531
24.1.3 Reduction and oxidation of monosaccharides	531
24.1.4 Disaccharides and polysaccharides	533
24.2 Nucleic Acids	534
24.2.1 Nucleosides and nucleotides	535
24.2.2 DNA and RNA	537
24.2.3 Base pairing in nucleic acids	537
24.3 Amino Acids, Peptides, and Proteins	539
24.3.1 α -Amino acids	539
24.3.2 Structures of peptides	542
24.3.3 Synthesis of peptides	543
24.3.4 Determination of peptide and protein sequences	546
24.3.5 Structures of proteins	547
24.4 Lipids	550
24.4.1 Fats and oils	550
Panel 24.2 Micelles and detergents	551
24.4.2 Phospholipids	551
24.4.3 Terpenes	553
Panel 24.3 Origin of the isoprene unit for terpene biosynthesis	554
24.4.4 Steroids	554
Panel 24.4 Biosynthesis of cholesterol from squalene	555
24.4.5 Eicosanoids	557
Summary	557
Problems	558

Chapter 25 Structural Determination of Organic Compounds

25.1 Electromagnetic Radiation and Spectroscopy	561
25.1.1 The electromagnetic spectrum and types of spectroscopy	561
25.1.2 Interactions of electromagnetic radiation with molecules	562
25.2 Ultraviolet and Visible Spectroscopy	563

25.3 Infrared Spectroscopy	564
25.3.1 Introduction to IR spectroscopy	564
25.3.2 Examples of IR spectra	566
25.4 Nuclear Magnetic Resonance Spectroscopy: Proton NMR Spectra	571
25.4.1 Physical basis of NMR	571
25.4.2 Proton chemical shifts	572
25.4.3 Integration: proton counting	575
Panel 25.1 Aromaticity and ring currents	575
25.4.4 Spin–spin splitting	576
25.4.5 Interpretation of ^1H NMR spectra	580
Panel 25.2 Topicity	582
25.4.6 Disappearance of spin–spin coupling	584
25.4.7 The nuclear Overhauser effect	585
25.5 Carbon-13 NMR Spectra	586
25.5.1 Introduction to ^{13}C NMR spectra	586
25.5.2 Interpretation of ^{13}C NMR spectra	587
25.6 Mass Spectrometry	589
25.6.1 The mass spectrometric method	589
25.6.2 The mass spectrum and fragment ions	590
25.6.3 High-resolution mass spectrometry: determination of molecular formulas	598
25.6.4 Advanced types of mass spectrometry	599
Summary	599
Problems	599

Appendices

Appendix 1 pK_a Values of Representative Compounds	602
Appendix 2 Principal Reactions of Functional Groups	605
Appendix 3 Syntheses of Classes of Compounds	608
Appendix 4 Reactions for the Formation of Carbon–Carbon Bonds	615

Additional Resources

Symbols and Recommended Values of Some Physical Constants / Unit Conversions	617
Symbols of SI Prefixes for Multiplicities and Fractions	618
Fundamental Classes of Reactions and Guidelines for Writing Curly Arrows	618
Index	619